(symbol-list-names x) maps symbol-name across a list.
(symbol-list-names x) → *
This is an ordinary defprojection.
Function:
(defun symbol-list-names-exec (x acc) (declare (xargs :guard (symbol-listp x))) (let ((__function__ 'symbol-list-names-exec)) (declare (ignorable __function__)) (if (consp x) (symbol-list-names-exec (cdr x) (cons (symbol-name (car x)) acc)) acc)))
Function:
(defun symbol-list-names-nrev (x nrev) (declare (xargs :stobjs (nrev))) (declare (xargs :guard (symbol-listp x))) (let ((__function__ 'symbol-list-names-nrev)) (declare (ignorable __function__)) (if (atom x) (nrev-fix nrev) (let ((nrev (nrev-push (symbol-name (car x)) nrev))) (symbol-list-names-nrev (cdr x) nrev)))))
Function:
(defun symbol-list-names (x) (declare (xargs :guard (symbol-listp x))) (let ((__function__ 'symbol-list-names)) (declare (ignorable __function__)) (mbe :logic (if (consp x) (cons (symbol-name (car x)) (symbol-list-names (cdr x))) nil) :exec (if (atom x) nil (with-local-nrev (symbol-list-names-nrev x nrev))))))
Theorem:
(defthm symbol-list-names-nrev-removal (equal (symbol-list-names-nrev acl2::x nrev) (append nrev (symbol-list-names acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm symbol-list-names-exec-removal (equal (symbol-list-names-exec acl2::x acl2::acc) (revappend (symbol-list-names acl2::x) acl2::acc)) :rule-classes ((:rewrite)))
Theorem:
(defthm symbol-list-names-of-take (implies (<= (nfix acl2::n) (len acl2::x)) (equal (symbol-list-names (take acl2::n acl2::x)) (take acl2::n (symbol-list-names acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm set-equiv-congruence-over-symbol-list-names (implies (set-equiv acl2::x acl2::y) (set-equiv (symbol-list-names acl2::x) (symbol-list-names acl2::y))) :rule-classes ((:congruence)))
Theorem:
(defthm subsetp-of-symbol-list-names-when-subsetp (implies (subsetp acl2::x acl2::y) (subsetp (symbol-list-names acl2::x) (symbol-list-names acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm member-of-symbol-name-in-symbol-list-names (implies (member acl2::k acl2::x) (member (symbol-name acl2::k) (symbol-list-names acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm symbol-list-names-of-rev (equal (symbol-list-names (rev acl2::x)) (rev (symbol-list-names acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm symbol-list-names-of-list-fix (equal (symbol-list-names (list-fix acl2::x)) (symbol-list-names acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm symbol-list-names-of-append (equal (symbol-list-names (append acl2::a acl2::b)) (append (symbol-list-names acl2::a) (symbol-list-names acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm cdr-of-symbol-list-names (equal (cdr (symbol-list-names acl2::x)) (symbol-list-names (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm car-of-symbol-list-names (equal (car (symbol-list-names acl2::x)) (and (consp acl2::x) (symbol-name (car acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm symbol-list-names-under-iff (iff (symbol-list-names acl2::x) (consp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm consp-of-symbol-list-names (equal (consp (symbol-list-names acl2::x)) (consp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm len-of-symbol-list-names (equal (len (symbol-list-names acl2::x)) (len acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-of-symbol-list-names (true-listp (symbol-list-names acl2::x)) :rule-classes :type-prescription)
Theorem:
(defthm symbol-list-names-when-not-consp (implies (not (consp acl2::x)) (equal (symbol-list-names acl2::x) nil)) :rule-classes ((:rewrite)))
Theorem:
(defthm symbol-list-names-of-cons (equal (symbol-list-names (cons acl2::a acl2::b)) (cons (symbol-name acl2::a) (symbol-list-names acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm string-listp-of-symbol-list-names (implies (force (symbol-listp x)) (string-listp (symbol-list-names x))))