Substitute into a vl-enumitem-p.
(vl-enumitem-subst x sigma) → new-x
Function:
(defun vl-enumitem-subst (x sigma) (declare (xargs :guard (and (vl-enumitem-p x) (vl-sigma-p sigma)))) (declare (ignorable x sigma)) (let ((__function__ 'vl-enumitem-subst)) (declare (ignorable __function__)) (b* (((vl-enumitem x) x)) (change-vl-enumitem x :range (vl-maybe-range-subst x.range sigma) :value (vl-maybe-expr-subst x.value sigma)))))
Theorem:
(defthm vl-enumitem-p-of-vl-enumitem-subst (b* ((new-x (vl-enumitem-subst x sigma))) (vl-enumitem-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-enumitem-subst-of-vl-enumitem-fix-x (equal (vl-enumitem-subst (vl-enumitem-fix x) sigma) (vl-enumitem-subst x sigma)))
Theorem:
(defthm vl-enumitem-subst-vl-enumitem-equiv-congruence-on-x (implies (vl-enumitem-equiv x x-equiv) (equal (vl-enumitem-subst x sigma) (vl-enumitem-subst x-equiv sigma))) :rule-classes :congruence)
Theorem:
(defthm vl-enumitem-subst-of-vl-sigma-fix-sigma (equal (vl-enumitem-subst x (vl-sigma-fix sigma)) (vl-enumitem-subst x sigma)))
Theorem:
(defthm vl-enumitem-subst-vl-sigma-equiv-congruence-on-sigma (implies (vl-sigma-equiv sigma sigma-equiv) (equal (vl-enumitem-subst x sigma) (vl-enumitem-subst x sigma-equiv))) :rule-classes :congruence)