(vl-exprlist-subst x sigma) → new-x
Theorem:
(defthm vl-exprlist-subst-of-update-nth (implies (<= (nfix acl2::n) (len acl2::x)) (equal (vl-exprlist-subst (update-nth acl2::n acl2::v acl2::x) sigma) (update-nth acl2::n (vl-expr-subst acl2::v sigma) (vl-exprlist-subst acl2::x sigma)))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-exprlist-subst-of-revappend (equal (vl-exprlist-subst (revappend acl2::x acl2::y) sigma) (revappend (vl-exprlist-subst acl2::x sigma) (vl-exprlist-subst acl2::y sigma))) :rule-classes ((:rewrite)))
Theorem:
(defthm nthcdr-of-vl-exprlist-subst (equal (nthcdr acl2::n (vl-exprlist-subst acl2::x sigma)) (vl-exprlist-subst (nthcdr acl2::n acl2::x) sigma)) :rule-classes ((:rewrite)))
Theorem:
(defthm nth-of-vl-exprlist-subst (equal (nth acl2::n (vl-exprlist-subst acl2::x sigma)) (and (< (nfix acl2::n) (len acl2::x)) (vl-expr-subst (nth acl2::n acl2::x) sigma))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-exprlist-subst-of-take (implies (<= (nfix acl2::n) (len acl2::x)) (equal (vl-exprlist-subst (take acl2::n acl2::x) sigma) (take acl2::n (vl-exprlist-subst acl2::x sigma)))) :rule-classes ((:rewrite)))
Theorem:
(defthm set-equiv-congruence-over-vl-exprlist-subst (implies (set-equiv acl2::x acl2::y) (set-equiv (vl-exprlist-subst acl2::x sigma) (vl-exprlist-subst acl2::y sigma))) :rule-classes ((:congruence)))
Theorem:
(defthm subsetp-of-vl-exprlist-subst-when-subsetp (implies (subsetp acl2::x acl2::y) (subsetp (vl-exprlist-subst acl2::x sigma) (vl-exprlist-subst acl2::y sigma))) :rule-classes ((:rewrite)))
Theorem:
(defthm member-of-vl-expr-subst-in-vl-exprlist-subst (implies (member acl2::k acl2::x) (member (vl-expr-subst acl2::k sigma) (vl-exprlist-subst acl2::x sigma))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-exprlist-subst-of-rev (equal (vl-exprlist-subst (rev acl2::x) sigma) (rev (vl-exprlist-subst acl2::x sigma))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-exprlist-subst-of-list-fix (equal (vl-exprlist-subst (list-fix acl2::x) sigma) (vl-exprlist-subst acl2::x sigma)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-exprlist-subst-of-append (equal (vl-exprlist-subst (append acl2::a acl2::b) sigma) (append (vl-exprlist-subst acl2::a sigma) (vl-exprlist-subst acl2::b sigma))) :rule-classes ((:rewrite)))
Theorem:
(defthm cdr-of-vl-exprlist-subst (equal (cdr (vl-exprlist-subst acl2::x sigma)) (vl-exprlist-subst (cdr acl2::x) sigma)) :rule-classes ((:rewrite)))
Theorem:
(defthm car-of-vl-exprlist-subst (equal (car (vl-exprlist-subst acl2::x sigma)) (and (consp acl2::x) (vl-expr-subst (car acl2::x) sigma))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-exprlist-subst-under-iff (iff (vl-exprlist-subst acl2::x sigma) (consp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm consp-of-vl-exprlist-subst (equal (consp (vl-exprlist-subst acl2::x sigma)) (consp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm len-of-vl-exprlist-subst (equal (len (vl-exprlist-subst acl2::x sigma)) (len acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-of-vl-exprlist-subst (true-listp (vl-exprlist-subst acl2::x sigma)) :rule-classes :type-prescription)
Theorem:
(defthm vl-exprlist-subst-when-not-consp (implies (not (consp acl2::x)) (equal (vl-exprlist-subst acl2::x sigma) nil)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-exprlist-subst-of-cons (equal (vl-exprlist-subst (cons acl2::a acl2::b) sigma) (cons (vl-expr-subst acl2::a sigma) (vl-exprlist-subst acl2::b sigma))) :rule-classes ((:rewrite)))