Substitute into a vl-fundecl-p.
(vl-fundecl-subst x sigma) → new-x
Function:
(defun vl-fundecl-subst (x sigma) (declare (xargs :guard (and (vl-fundecl-p x) (vl-sigma-p sigma)))) (declare (ignorable x sigma)) (let ((__function__ 'vl-fundecl-subst)) (declare (ignorable __function__)) (b* (((vl-fundecl x) x)) (change-vl-fundecl x :rettype (vl-datatype-subst x.rettype sigma) :vardecls (vl-vardecllist-subst x.vardecls sigma) :paramdecls (vl-paramdecllist-subst x.paramdecls sigma) :portdecls (vl-portdecllist-subst x.portdecls sigma) :body (vl-stmt-subst x.body sigma)))))
Theorem:
(defthm vl-fundecl-p-of-vl-fundecl-subst (b* ((new-x (vl-fundecl-subst x sigma))) (vl-fundecl-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-fundecl-subst-of-vl-fundecl-fix-x (equal (vl-fundecl-subst (vl-fundecl-fix x) sigma) (vl-fundecl-subst x sigma)))
Theorem:
(defthm vl-fundecl-subst-vl-fundecl-equiv-congruence-on-x (implies (vl-fundecl-equiv x x-equiv) (equal (vl-fundecl-subst x sigma) (vl-fundecl-subst x-equiv sigma))) :rule-classes :congruence)
Theorem:
(defthm vl-fundecl-subst-of-vl-sigma-fix-sigma (equal (vl-fundecl-subst x (vl-sigma-fix sigma)) (vl-fundecl-subst x sigma)))
Theorem:
(defthm vl-fundecl-subst-vl-sigma-equiv-congruence-on-sigma (implies (vl-sigma-equiv sigma sigma-equiv) (equal (vl-fundecl-subst x sigma) (vl-fundecl-subst x sigma-equiv))) :rule-classes :congruence)