(vl-hidstep-mark-interfaces mtype step ss st ctx) → new-st
Function:
(defun vl-hidstep-mark-interfaces (mtype step ss st ctx) (declare (xargs :guard (and (member mtype '(:used :set)) (vl-hidstep-p step) (vl-scopestack-p ss) (vl-lucidstate-p st) (vl-context1-p ctx)))) (let ((__function__ 'vl-hidstep-mark-interfaces)) (declare (ignorable __function__)) (b* (((vl-hidstep step)) ((when (eq (tag step.item) :vl-interfaceport)) (b* ((key (make-vl-lucidkey :item step.item :scopestack (vl-normalize-scopestack step.ss))) (occ (make-vl-lucidocc-solo :ctx ctx :ss ss))) (vl-lucidstate-mark mtype key occ st ctx)))) (vl-lucidstate-fix st))))
Theorem:
(defthm vl-lucidstate-p-of-vl-hidstep-mark-interfaces (b* ((new-st (vl-hidstep-mark-interfaces mtype step ss st ctx))) (vl-lucidstate-p new-st)) :rule-classes :rewrite)
Theorem:
(defthm vl-hidstep-mark-interfaces-of-vl-hidstep-fix-step (equal (vl-hidstep-mark-interfaces mtype (vl-hidstep-fix step) ss st ctx) (vl-hidstep-mark-interfaces mtype step ss st ctx)))
Theorem:
(defthm vl-hidstep-mark-interfaces-vl-hidstep-equiv-congruence-on-step (implies (vl-hidstep-equiv step step-equiv) (equal (vl-hidstep-mark-interfaces mtype step ss st ctx) (vl-hidstep-mark-interfaces mtype step-equiv ss st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-hidstep-mark-interfaces-of-vl-scopestack-fix-ss (equal (vl-hidstep-mark-interfaces mtype step (vl-scopestack-fix ss) st ctx) (vl-hidstep-mark-interfaces mtype step ss st ctx)))
Theorem:
(defthm vl-hidstep-mark-interfaces-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-hidstep-mark-interfaces mtype step ss st ctx) (vl-hidstep-mark-interfaces mtype step ss-equiv st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-hidstep-mark-interfaces-of-vl-lucidstate-fix-st (equal (vl-hidstep-mark-interfaces mtype step ss (vl-lucidstate-fix st) ctx) (vl-hidstep-mark-interfaces mtype step ss st ctx)))
Theorem:
(defthm vl-hidstep-mark-interfaces-vl-lucidstate-equiv-congruence-on-st (implies (vl-lucidstate-equiv st st-equiv) (equal (vl-hidstep-mark-interfaces mtype step ss st ctx) (vl-hidstep-mark-interfaces mtype step ss st-equiv ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-hidstep-mark-interfaces-of-vl-context1-fix-ctx (equal (vl-hidstep-mark-interfaces mtype step ss st (vl-context1-fix ctx)) (vl-hidstep-mark-interfaces mtype step ss st ctx)))
Theorem:
(defthm vl-hidstep-mark-interfaces-vl-context1-equiv-congruence-on-ctx (implies (vl-context1-equiv ctx ctx-equiv) (equal (vl-hidstep-mark-interfaces mtype step ss st ctx) (vl-hidstep-mark-interfaces mtype step ss st ctx-equiv))) :rule-classes :congruence)