Gather all top-level expressions from a vl-initiallist-p.
(vl-initiallist-lvalexprs x) → exprs
Function:
(defun vl-initiallist-lvalexprs (x) (declare (xargs :guard (vl-initiallist-p x))) (let ((__function__ 'vl-initiallist-lvalexprs)) (declare (ignorable __function__)) (mbe :logic (if (atom x) nil (append (vl-initial-lvalexprs (car x)) (vl-initiallist-lvalexprs (cdr x)))) :exec (with-local-nrev (vl-initiallist-lvalexprs-nrev x nrev)))))
Theorem:
(defthm vl-exprlist-p-of-vl-initiallist-lvalexprs (b* ((exprs (vl-initiallist-lvalexprs x))) (vl-exprlist-p exprs)) :rule-classes :rewrite)
Theorem:
(defthm true-listp-of-vl-initiallist-lvalexprs (true-listp (vl-initiallist-lvalexprs x)) :rule-classes :type-prescription)
Theorem:
(defthm vl-initiallist-lvalexprs-nrev-removal (equal (vl-initiallist-lvalexprs-nrev x nrev) (append nrev (vl-initiallist-lvalexprs x))))
Theorem:
(defthm set-equiv-congruence-over-vl-initiallist-lvalexprs (implies (set-equiv acl2::x acl2::y) (set-equiv (vl-initiallist-lvalexprs acl2::x) (vl-initiallist-lvalexprs acl2::y))) :rule-classes ((:congruence)))
Theorem:
(defthm subsetp-of-vl-initiallist-lvalexprs-when-subsetp (implies (subsetp acl2::x acl2::y) (subsetp (vl-initiallist-lvalexprs acl2::x) (vl-initiallist-lvalexprs acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm member-in-vl-initiallist-lvalexprs (implies (and (member acl2::k (vl-initial-lvalexprs acl2::j)) (member acl2::j acl2::x)) (member acl2::k (vl-initiallist-lvalexprs acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-initiallist-lvalexprs-of-list-fix (equal (vl-initiallist-lvalexprs (list-fix acl2::x)) (vl-initiallist-lvalexprs acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-initiallist-lvalexprs-of-append (equal (vl-initiallist-lvalexprs (append acl2::a acl2::b)) (append (vl-initiallist-lvalexprs acl2::a) (vl-initiallist-lvalexprs acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-initiallist-lvalexprs-when-not-consp (implies (not (consp acl2::x)) (equal (vl-initiallist-lvalexprs acl2::x) nil)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-initiallist-lvalexprs-of-cons (equal (vl-initiallist-lvalexprs (cons acl2::a acl2::b)) (append (vl-initial-lvalexprs acl2::a) (vl-initiallist-lvalexprs acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-exprlist-lvaluesp-of-vl-initiallist-lvalexprs (vl-exprlist-lvaluesp (vl-initiallist-lvalexprs x)))
Theorem:
(defthm vl-initiallist-lvalexprs-of-vl-initiallist-fix-x (equal (vl-initiallist-lvalexprs (vl-initiallist-fix x)) (vl-initiallist-lvalexprs x)))
Theorem:
(defthm vl-initiallist-lvalexprs-vl-initiallist-equiv-congruence-on-x (implies (vl-initiallist-equiv x x-equiv) (equal (vl-initiallist-lvalexprs x) (vl-initiallist-lvalexprs x-equiv))) :rule-classes :congruence)