Name unnamed module instances.
(vl-modinstlist-addinstnames x nf) → (mv new-x nf)
Function:
(defun vl-modinstlist-addinstnames (x nf) (declare (xargs :guard (and (vl-modinstlist-p x) (vl-namefactory-p nf)))) (let ((__function__ 'vl-modinstlist-addinstnames)) (declare (ignorable __function__)) (b* (((when (atom x)) (mv x (vl-namefactory-fix nf))) ((mv car nf) (vl-modinst-addinstnames (car x) nf)) ((mv cdr nf) (vl-modinstlist-addinstnames (cdr x) nf))) (mv (cons car cdr) nf))))
Theorem:
(defthm vl-modinstlist-p-of-vl-modinstlist-addinstnames.new-x (b* (((mv ?new-x ?nf) (vl-modinstlist-addinstnames x nf))) (vl-modinstlist-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-namefactory-p-of-vl-modinstlist-addinstnames.nf (b* (((mv ?new-x ?nf) (vl-modinstlist-addinstnames x nf))) (vl-namefactory-p nf)) :rule-classes :rewrite)
Theorem:
(defthm vl-modinstlist-addinstnames-of-vl-modinstlist-fix-x (equal (vl-modinstlist-addinstnames (vl-modinstlist-fix x) nf) (vl-modinstlist-addinstnames x nf)))
Theorem:
(defthm vl-modinstlist-addinstnames-vl-modinstlist-equiv-congruence-on-x (implies (vl-modinstlist-equiv x x-equiv) (equal (vl-modinstlist-addinstnames x nf) (vl-modinstlist-addinstnames x-equiv nf))) :rule-classes :congruence)
Theorem:
(defthm vl-modinstlist-addinstnames-of-vl-namefactory-fix-nf (equal (vl-modinstlist-addinstnames x (vl-namefactory-fix nf)) (vl-modinstlist-addinstnames x nf)))
Theorem:
(defthm vl-modinstlist-addinstnames-vl-namefactory-equiv-congruence-on-nf (implies (vl-namefactory-equiv nf nf-equiv) (equal (vl-modinstlist-addinstnames x nf) (vl-modinstlist-addinstnames x nf-equiv))) :rule-classes :congruence)