(vl-modulelist-propagate x limits) maps vl-module-propagate across a list.
(vl-modulelist-propagate x limits) → new-x
This is an ordinary defprojection.
Function:
(defun vl-modulelist-propagate-exec (x limits acc) (declare (xargs :guard (and (vl-modulelist-p x) (propagate-limits-p limits)))) (let ((__function__ 'vl-modulelist-propagate-exec)) (declare (ignorable __function__)) (if (consp x) (vl-modulelist-propagate-exec (cdr x) limits (cons (vl-module-propagate (car x) limits) acc)) acc)))
Function:
(defun vl-modulelist-propagate-nrev (x limits nrev) (declare (xargs :stobjs (nrev))) (declare (xargs :guard (and (vl-modulelist-p x) (propagate-limits-p limits)))) (let ((__function__ 'vl-modulelist-propagate-nrev)) (declare (ignorable __function__)) (if (atom x) (nrev-fix nrev) (let ((nrev (nrev-push (vl-module-propagate (car x) limits) nrev))) (vl-modulelist-propagate-nrev (cdr x) limits nrev)))))
Function:
(defun vl-modulelist-propagate (x limits) (declare (xargs :guard (and (vl-modulelist-p x) (propagate-limits-p limits)))) (let ((__function__ 'vl-modulelist-propagate)) (declare (ignorable __function__)) (mbe :logic (if (consp x) (cons (vl-module-propagate (car x) limits) (vl-modulelist-propagate (cdr x) limits)) nil) :exec (if (atom x) nil (with-local-nrev (vl-modulelist-propagate-nrev x limits nrev))))))
Theorem:
(defthm vl-modulelist-p-of-vl-modulelist-propagate (b* ((new-x (vl-modulelist-propagate x limits))) (vl-modulelist-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-modulelist-propagate-of-update-nth (implies (<= (nfix acl2::n) (len acl2::x)) (equal (vl-modulelist-propagate (update-nth acl2::n acl2::v acl2::x) limits) (update-nth acl2::n (vl-module-propagate acl2::v limits) (vl-modulelist-propagate acl2::x limits)))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-propagate-of-revappend (equal (vl-modulelist-propagate (revappend acl2::x acl2::y) limits) (revappend (vl-modulelist-propagate acl2::x limits) (vl-modulelist-propagate acl2::y limits))) :rule-classes ((:rewrite)))
Theorem:
(defthm nthcdr-of-vl-modulelist-propagate (equal (nthcdr acl2::n (vl-modulelist-propagate acl2::x limits)) (vl-modulelist-propagate (nthcdr acl2::n acl2::x) limits)) :rule-classes ((:rewrite)))
Theorem:
(defthm nth-of-vl-modulelist-propagate (equal (nth acl2::n (vl-modulelist-propagate acl2::x limits)) (and (< (nfix acl2::n) (len acl2::x)) (vl-module-propagate (nth acl2::n acl2::x) limits))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-propagate-nrev-removal (equal (vl-modulelist-propagate-nrev acl2::x limits nrev) (append nrev (vl-modulelist-propagate acl2::x limits))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-propagate-exec-removal (equal (vl-modulelist-propagate-exec acl2::x limits acl2::acc) (revappend (vl-modulelist-propagate acl2::x limits) acl2::acc)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-propagate-of-take (implies (<= (nfix acl2::n) (len acl2::x)) (equal (vl-modulelist-propagate (take acl2::n acl2::x) limits) (take acl2::n (vl-modulelist-propagate acl2::x limits)))) :rule-classes ((:rewrite)))
Theorem:
(defthm set-equiv-congruence-over-vl-modulelist-propagate (implies (set-equiv acl2::x acl2::y) (set-equiv (vl-modulelist-propagate acl2::x limits) (vl-modulelist-propagate acl2::y limits))) :rule-classes ((:congruence)))
Theorem:
(defthm subsetp-of-vl-modulelist-propagate-when-subsetp (implies (subsetp acl2::x acl2::y) (subsetp (vl-modulelist-propagate acl2::x limits) (vl-modulelist-propagate acl2::y limits))) :rule-classes ((:rewrite)))
Theorem:
(defthm member-of-vl-module-propagate-in-vl-modulelist-propagate (implies (member acl2::k acl2::x) (member (vl-module-propagate acl2::k limits) (vl-modulelist-propagate acl2::x limits))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-propagate-of-rev (equal (vl-modulelist-propagate (rev acl2::x) limits) (rev (vl-modulelist-propagate acl2::x limits))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-propagate-of-list-fix (equal (vl-modulelist-propagate (list-fix acl2::x) limits) (vl-modulelist-propagate acl2::x limits)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-propagate-of-append (equal (vl-modulelist-propagate (append acl2::a acl2::b) limits) (append (vl-modulelist-propagate acl2::a limits) (vl-modulelist-propagate acl2::b limits))) :rule-classes ((:rewrite)))
Theorem:
(defthm cdr-of-vl-modulelist-propagate (equal (cdr (vl-modulelist-propagate acl2::x limits)) (vl-modulelist-propagate (cdr acl2::x) limits)) :rule-classes ((:rewrite)))
Theorem:
(defthm car-of-vl-modulelist-propagate (equal (car (vl-modulelist-propagate acl2::x limits)) (and (consp acl2::x) (vl-module-propagate (car acl2::x) limits))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-propagate-under-iff (iff (vl-modulelist-propagate acl2::x limits) (consp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm consp-of-vl-modulelist-propagate (equal (consp (vl-modulelist-propagate acl2::x limits)) (consp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm len-of-vl-modulelist-propagate (equal (len (vl-modulelist-propagate acl2::x limits)) (len acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-of-vl-modulelist-propagate (true-listp (vl-modulelist-propagate acl2::x limits)) :rule-classes :type-prescription)
Theorem:
(defthm vl-modulelist-propagate-when-not-consp (implies (not (consp acl2::x)) (equal (vl-modulelist-propagate acl2::x limits) nil)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-propagate-of-cons (equal (vl-modulelist-propagate (cons acl2::a acl2::b) limits) (cons (vl-module-propagate acl2::a limits) (vl-modulelist-propagate acl2::b limits))) :rule-classes ((:rewrite)))