(vl-modulelist-selresolve x ss) maps vl-module-selresolve across a list.
(vl-modulelist-selresolve x ss) → new-x
This is an ordinary defprojection.
Function:
(defun vl-modulelist-selresolve-exec (x ss acc) (declare (xargs :guard (and (vl-modulelist-p x) (vl-scopestack-p ss)))) (declare (xargs :guard t)) (let ((__function__ 'vl-modulelist-selresolve-exec)) (declare (ignorable __function__)) (if (consp x) (vl-modulelist-selresolve-exec (cdr x) ss (cons (vl-module-selresolve (car x) ss) acc)) acc)))
Function:
(defun vl-modulelist-selresolve-nrev (x ss nrev) (declare (xargs :stobjs (nrev))) (declare (xargs :guard (and (vl-modulelist-p x) (vl-scopestack-p ss)))) (declare (xargs :guard t)) (let ((__function__ 'vl-modulelist-selresolve-nrev)) (declare (ignorable __function__)) (if (atom x) (nrev-fix nrev) (let ((nrev (nrev-push (vl-module-selresolve (car x) ss) nrev))) (vl-modulelist-selresolve-nrev (cdr x) ss nrev)))))
Function:
(defun vl-modulelist-selresolve (x ss) (declare (xargs :guard (and (vl-modulelist-p x) (vl-scopestack-p ss)))) (declare (xargs :guard t)) (let ((__function__ 'vl-modulelist-selresolve)) (declare (ignorable __function__)) (mbe :logic (if (consp x) (cons (vl-module-selresolve (car x) ss) (vl-modulelist-selresolve (cdr x) ss)) nil) :exec (if (atom x) nil (with-local-nrev (vl-modulelist-selresolve-nrev x ss nrev))))))
Theorem:
(defthm vl-modulelist-p-of-vl-modulelist-selresolve (b* ((new-x (vl-modulelist-selresolve x ss))) (vl-modulelist-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-modulelist-selresolve-of-vl-modulelist-fix-x (equal (vl-modulelist-selresolve (vl-modulelist-fix x) ss) (vl-modulelist-selresolve x ss)))
Theorem:
(defthm vl-modulelist-selresolve-vl-modulelist-equiv-congruence-on-x (implies (vl-modulelist-equiv x x-equiv) (equal (vl-modulelist-selresolve x ss) (vl-modulelist-selresolve x-equiv ss))) :rule-classes :congruence)
Theorem:
(defthm vl-modulelist-selresolve-of-vl-scopestack-fix-ss (equal (vl-modulelist-selresolve x (vl-scopestack-fix ss)) (vl-modulelist-selresolve x ss)))
Theorem:
(defthm vl-modulelist-selresolve-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-modulelist-selresolve x ss) (vl-modulelist-selresolve x ss-equiv))) :rule-classes :congruence)
Theorem:
(defthm vl-modulelist-selresolve-of-update-nth (implies (<= (nfix acl2::n) (len acl2::x)) (equal (vl-modulelist-selresolve (update-nth acl2::n acl2::v acl2::x) ss) (update-nth acl2::n (vl-module-selresolve acl2::v ss) (vl-modulelist-selresolve acl2::x ss)))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-selresolve-of-revappend (equal (vl-modulelist-selresolve (revappend acl2::x acl2::y) ss) (revappend (vl-modulelist-selresolve acl2::x ss) (vl-modulelist-selresolve acl2::y ss))) :rule-classes ((:rewrite)))
Theorem:
(defthm nthcdr-of-vl-modulelist-selresolve (equal (nthcdr acl2::n (vl-modulelist-selresolve acl2::x ss)) (vl-modulelist-selresolve (nthcdr acl2::n acl2::x) ss)) :rule-classes ((:rewrite)))
Theorem:
(defthm nth-of-vl-modulelist-selresolve (equal (nth acl2::n (vl-modulelist-selresolve acl2::x ss)) (and (< (nfix acl2::n) (len acl2::x)) (vl-module-selresolve (nth acl2::n acl2::x) ss))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-selresolve-nrev-removal (equal (vl-modulelist-selresolve-nrev acl2::x ss nrev) (append nrev (vl-modulelist-selresolve acl2::x ss))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-selresolve-exec-removal (equal (vl-modulelist-selresolve-exec acl2::x ss acl2::acc) (revappend (vl-modulelist-selresolve acl2::x ss) acl2::acc)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-selresolve-of-take (implies (<= (nfix acl2::n) (len acl2::x)) (equal (vl-modulelist-selresolve (take acl2::n acl2::x) ss) (take acl2::n (vl-modulelist-selresolve acl2::x ss)))) :rule-classes ((:rewrite)))
Theorem:
(defthm set-equiv-congruence-over-vl-modulelist-selresolve (implies (set-equiv acl2::x acl2::y) (set-equiv (vl-modulelist-selresolve acl2::x ss) (vl-modulelist-selresolve acl2::y ss))) :rule-classes ((:congruence)))
Theorem:
(defthm subsetp-of-vl-modulelist-selresolve-when-subsetp (implies (subsetp acl2::x acl2::y) (subsetp (vl-modulelist-selresolve acl2::x ss) (vl-modulelist-selresolve acl2::y ss))) :rule-classes ((:rewrite)))
Theorem:
(defthm member-of-vl-module-selresolve-in-vl-modulelist-selresolve (implies (member acl2::k acl2::x) (member (vl-module-selresolve acl2::k ss) (vl-modulelist-selresolve acl2::x ss))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-selresolve-of-rev (equal (vl-modulelist-selresolve (rev acl2::x) ss) (rev (vl-modulelist-selresolve acl2::x ss))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-selresolve-of-list-fix (equal (vl-modulelist-selresolve (list-fix acl2::x) ss) (vl-modulelist-selresolve acl2::x ss)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-selresolve-of-append (equal (vl-modulelist-selresolve (append acl2::a acl2::b) ss) (append (vl-modulelist-selresolve acl2::a ss) (vl-modulelist-selresolve acl2::b ss))) :rule-classes ((:rewrite)))
Theorem:
(defthm cdr-of-vl-modulelist-selresolve (equal (cdr (vl-modulelist-selresolve acl2::x ss)) (vl-modulelist-selresolve (cdr acl2::x) ss)) :rule-classes ((:rewrite)))
Theorem:
(defthm car-of-vl-modulelist-selresolve (equal (car (vl-modulelist-selresolve acl2::x ss)) (and (consp acl2::x) (vl-module-selresolve (car acl2::x) ss))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-selresolve-under-iff (iff (vl-modulelist-selresolve acl2::x ss) (consp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm consp-of-vl-modulelist-selresolve (equal (consp (vl-modulelist-selresolve acl2::x ss)) (consp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm len-of-vl-modulelist-selresolve (equal (len (vl-modulelist-selresolve acl2::x ss)) (len acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-of-vl-modulelist-selresolve (true-listp (vl-modulelist-selresolve acl2::x ss)) :rule-classes :type-prescription)
Theorem:
(defthm vl-modulelist-selresolve-when-not-consp (implies (not (consp acl2::x)) (equal (vl-modulelist-selresolve acl2::x ss) nil)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-selresolve-of-cons (equal (vl-modulelist-selresolve (cons acl2::a acl2::b) ss) (cons (vl-module-selresolve acl2::a ss) (vl-modulelist-selresolve acl2::b ss))) :rule-classes ((:rewrite)))