Scopesubstitute into a vl-packeddimension-p.
(vl-packeddimension-scopesubst x ss) → new-x
Function:
(defun vl-packeddimension-scopesubst (x ss) (declare (xargs :guard (and (vl-packeddimension-p x) (vl-scopestack-p ss)))) (declare (ignorable x ss)) (let ((__function__ 'vl-packeddimension-scopesubst)) (declare (ignorable __function__)) (b* ((x (vl-packeddimension-fix x))) (if (eq x :vl-unsized-dimension) x (vl-range-scopesubst x ss)))))
Theorem:
(defthm vl-packeddimension-p-of-vl-packeddimension-scopesubst (b* ((new-x (vl-packeddimension-scopesubst x ss))) (vl-packeddimension-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-packeddimension-scopesubst-of-vl-packeddimension-fix-x (equal (vl-packeddimension-scopesubst (vl-packeddimension-fix x) ss) (vl-packeddimension-scopesubst x ss)))
Theorem:
(defthm vl-packeddimension-scopesubst-vl-packeddimension-equiv-congruence-on-x (implies (vl-packeddimension-equiv x x-equiv) (equal (vl-packeddimension-scopesubst x ss) (vl-packeddimension-scopesubst x-equiv ss))) :rule-classes :congruence)
Theorem:
(defthm vl-packeddimension-scopesubst-of-vl-scopestack-fix-ss (equal (vl-packeddimension-scopesubst x (vl-scopestack-fix ss)) (vl-packeddimension-scopesubst x ss)))
Theorem:
(defthm vl-packeddimension-scopesubst-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-packeddimension-scopesubst x ss) (vl-packeddimension-scopesubst x ss-equiv))) :rule-classes :congruence)