(vl-plainarg-simp x) → new-x
Function:
(defun vl-plainarg-simp (x) (declare (xargs :guard (vl-plainarg-p x))) (let ((__function__ 'vl-plainarg-simp)) (declare (ignorable __function__)) (b* ((x (vl-plainarg-fix x)) ((vl-plainarg x) x) ((unless (eq x.dir :vl-input)) x) ((unless x.expr) x)) (change-vl-plainarg x :expr (vl-expr-simp x.expr)))))
Theorem:
(defthm vl-plainarg-p-of-vl-plainarg-simp (b* ((new-x (vl-plainarg-simp x))) (vl-plainarg-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-plainarg-simp-of-vl-plainarg-fix-x (equal (vl-plainarg-simp (vl-plainarg-fix x)) (vl-plainarg-simp x)))
Theorem:
(defthm vl-plainarg-simp-vl-plainarg-equiv-congruence-on-x (implies (vl-plainarg-equiv x x-equiv) (equal (vl-plainarg-simp x) (vl-plainarg-simp x-equiv))) :rule-classes :congruence)