(vl-plainarglist-split x elem delta) → (mv new-x delta)
Function:
(defun vl-plainarglist-split (x elem delta) (declare (xargs :guard (and (vl-plainarglist-p x) (vl-modelement-p elem) (vl-delta-p delta)))) (let ((__function__ 'vl-plainarglist-split)) (declare (ignorable __function__)) (b* (((when (atom x)) (mv nil delta)) ((mv car delta) (vl-plainarg-split (car x) elem delta)) ((mv cdr delta) (vl-plainarglist-split (cdr x) elem delta))) (mv (cons car cdr) delta))))
Theorem:
(defthm vl-plainarglist-p-of-vl-plainarglist-split.new-x (implies (and (force (vl-plainarglist-p x)) (force (vl-modelement-p elem)) (force (vl-delta-p delta))) (b* (((mv ?new-x ?delta) (vl-plainarglist-split x elem delta))) (vl-plainarglist-p new-x))) :rule-classes :rewrite)
Theorem:
(defthm vl-delta-p-of-vl-plainarglist-split.delta (implies (and (force (vl-plainarglist-p x)) (force (vl-modelement-p elem)) (force (vl-delta-p delta))) (b* (((mv ?new-x ?delta) (vl-plainarglist-split x elem delta))) (vl-delta-p delta))) :rule-classes :rewrite)