(vl-distlist-strip x) → new-x
Function:
(defun vl-distlist-strip (x) (declare (xargs :guard (vl-distlist-p x))) (let ((__function__ 'vl-distlist-strip)) (declare (ignorable __function__)) (b* (((when (atom x)) (b* nil x)) (car (vl-distitem-strip (car x))) (cdr (vl-distlist-strip (cdr x)))) (cons-with-hint car cdr x))))
Theorem:
(defthm vl-distlist-p-of-vl-distlist-strip (b* ((new-x (vl-distlist-strip x))) (vl-distlist-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-distlist-strip-of-vl-distlist-fix-x (equal (vl-distlist-strip (vl-distlist-fix x)) (vl-distlist-strip x)))
Theorem:
(defthm vl-distlist-strip-vl-distlist-equiv-congruence-on-x (implies (vl-distlist-equiv x x-equiv) (equal (vl-distlist-strip x) (vl-distlist-strip x-equiv))) :rule-classes :congruence)