Add a single top-level dependency to the answer we're building.
(vl-immdeps-add-raw-dependency name ans) → new-ans
This is low level and doesn't check that the
Function:
(defun vl-immdeps-add-raw-dependency (name ans) (declare (xargs :guard (and (stringp name) (vl-immdeps-p ans)))) (let ((__function__ 'vl-immdeps-add-raw-dependency)) (declare (ignorable __function__)) (change-vl-immdeps ans :deps (cons (hons-copy name) (vl-immdeps->deps ans)))))
Theorem:
(defthm vl-immdeps-p-of-vl-immdeps-add-raw-dependency (b* ((new-ans (vl-immdeps-add-raw-dependency name ans))) (vl-immdeps-p new-ans)) :rule-classes :rewrite)
Theorem:
(defthm vl-immdeps-add-raw-dependency-of-str-fix-name (equal (vl-immdeps-add-raw-dependency (str-fix name) ans) (vl-immdeps-add-raw-dependency name ans)))
Theorem:
(defthm vl-immdeps-add-raw-dependency-streqv-congruence-on-name (implies (streqv name name-equiv) (equal (vl-immdeps-add-raw-dependency name ans) (vl-immdeps-add-raw-dependency name-equiv ans))) :rule-classes :congruence)
Theorem:
(defthm vl-immdeps-add-raw-dependency-of-vl-immdeps-fix-ans (equal (vl-immdeps-add-raw-dependency name (vl-immdeps-fix ans)) (vl-immdeps-add-raw-dependency name ans)))
Theorem:
(defthm vl-immdeps-add-raw-dependency-vl-immdeps-equiv-congruence-on-ans (implies (vl-immdeps-equiv ans ans-equiv) (equal (vl-immdeps-add-raw-dependency name ans) (vl-immdeps-add-raw-dependency name ans-equiv))) :rule-classes :congruence)