(vl-integer-arithclass-p x) → *
Function:
(defun vl-integer-arithclass-p$inline (x) (declare (xargs :guard (vl-arithclass-p x))) (let ((__function__ 'vl-integer-arithclass-p)) (declare (ignorable __function__)) (or (vl-arithclass-equiv x :vl-signed-int-class) (vl-arithclass-equiv x :vl-unsigned-int-class))))
Theorem:
(defthm vl-integer-arithclass-p-of-vl-exprsign->arithclass (vl-integer-arithclass-p (vl-exprsign->arithclass x)))
Function:
(defun vl-integer-arithclass->exprsign$inline (x) (declare (xargs :guard (vl-arithclass-p x))) (declare (xargs :guard (vl-integer-arithclass-p x))) (let ((__function__ 'vl-integer-arithclass->exprsign)) (declare (ignorable __function__)) (if (vl-arithclass-equiv x :vl-signed-int-class) :vl-signed :vl-unsigned)))
Theorem:
(defthm vl-exprsign-p-of-vl-integer-arithclass->exprsign (b* ((sign (vl-integer-arithclass->exprsign$inline x))) (vl-exprsign-p sign)) :rule-classes :rewrite)
Theorem:
(defthm vl-integer-arithclass->exprsign$inline-of-vl-arithclass-fix-x (equal (vl-integer-arithclass->exprsign$inline (vl-arithclass-fix x)) (vl-integer-arithclass->exprsign$inline x)))
Theorem:
(defthm vl-integer-arithclass->exprsign$inline-vl-arithclass-equiv-congruence-on-x (implies (vl-arithclass-equiv x x-equiv) (equal (vl-integer-arithclass->exprsign$inline x) (vl-integer-arithclass->exprsign$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm symbolp-of-vl-datatype-arithclass (let ((ret (mv-nth 1 (vl-datatype-arithclass x)))) (and (symbolp ret) (not (equal ret t)) (not (equal ret nil)))) :rule-classes :type-prescription)
Theorem:
(defthm vl-integer-arithclass-p-of-vl-arithclass-max (implies (and (vl-integer-arithclass-p x) (vl-integer-arithclass-p y)) (vl-integer-arithclass-p (vl-arithclass-max x y))))
Theorem:
(defthm vl-integer-arithclass-p$inline-of-vl-arithclass-fix-x (equal (vl-integer-arithclass-p$inline (vl-arithclass-fix x)) (vl-integer-arithclass-p$inline x)))
Theorem:
(defthm vl-integer-arithclass-p$inline-vl-arithclass-equiv-congruence-on-x (implies (vl-arithclass-equiv x x-equiv) (equal (vl-integer-arithclass-p$inline x) (vl-integer-arithclass-p$inline x-equiv))) :rule-classes :congruence)