(vl-pp-propportlist x &key (ps 'ps)) → ps
Function:
(defun vl-pp-propportlist-fn (x ps) (declare (xargs :stobjs (ps))) (declare (xargs :guard (vl-propportlist-p x))) (let ((__function__ 'vl-pp-propportlist)) (declare (ignorable __function__)) (cond ((atom x) ps) ((atom (cdr x)) (vl-pp-propport (car x))) (t (vl-ps-seq (vl-pp-propport (car x)) (vl-print ", ") (vl-pp-propportlist (cdr x)))))))
Theorem:
(defthm vl-pp-propportlist-fn-of-vl-propportlist-fix-x (equal (vl-pp-propportlist-fn (vl-propportlist-fix x) ps) (vl-pp-propportlist-fn x ps)))
Theorem:
(defthm vl-pp-propportlist-fn-vl-propportlist-equiv-congruence-on-x (implies (vl-propportlist-equiv x x-equiv) (equal (vl-pp-propportlist-fn x ps) (vl-pp-propportlist-fn x-equiv ps))) :rule-classes :congruence)