(vl-propportlist-immdeps x ans &key (ss 'ss) (ctx 'ctx)) → new-ans
Function:
(defun vl-propportlist-immdeps-fn (x ans ss ctx) (declare (xargs :guard (and (vl-propportlist-p x) (vl-immdeps-p ans) (vl-scopestack-p ss) (any-p ctx)))) (let ((__function__ 'vl-propportlist-immdeps)) (declare (ignorable __function__)) (b* (((when (atom x)) (vl-immdeps-fix ans)) (ans (vl-propport-immdeps (car x) ans))) (vl-propportlist-immdeps (cdr x) ans))))
Theorem:
(defthm vl-immdeps-p-of-vl-propportlist-immdeps (b* ((new-ans (vl-propportlist-immdeps-fn x ans ss ctx))) (vl-immdeps-p new-ans)) :rule-classes :rewrite)
Theorem:
(defthm vl-propportlist-immdeps-fn-of-vl-propportlist-fix-x (equal (vl-propportlist-immdeps-fn (vl-propportlist-fix x) ans ss ctx) (vl-propportlist-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-propportlist-immdeps-fn-vl-propportlist-equiv-congruence-on-x (implies (vl-propportlist-equiv x x-equiv) (equal (vl-propportlist-immdeps-fn x ans ss ctx) (vl-propportlist-immdeps-fn x-equiv ans ss ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-propportlist-immdeps-fn-of-vl-immdeps-fix-ans (equal (vl-propportlist-immdeps-fn x (vl-immdeps-fix ans) ss ctx) (vl-propportlist-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-propportlist-immdeps-fn-vl-immdeps-equiv-congruence-on-ans (implies (vl-immdeps-equiv ans ans-equiv) (equal (vl-propportlist-immdeps-fn x ans ss ctx) (vl-propportlist-immdeps-fn x ans-equiv ss ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-propportlist-immdeps-fn-of-vl-scopestack-fix-ss (equal (vl-propportlist-immdeps-fn x ans (vl-scopestack-fix ss) ctx) (vl-propportlist-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-propportlist-immdeps-fn-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-propportlist-immdeps-fn x ans ss ctx) (vl-propportlist-immdeps-fn x ans ss-equiv ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-propportlist-immdeps-fn-of-identity-ctx (equal (vl-propportlist-immdeps-fn x ans ss (identity ctx)) (vl-propportlist-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-propportlist-immdeps-fn-equal-congruence-on-ctx (implies (equal ctx ctx-equiv) (equal (vl-propportlist-immdeps-fn x ans ss ctx) (vl-propportlist-immdeps-fn x ans ss ctx-equiv))) :rule-classes :congruence)