Fixing function for call-gate-descriptorbits bit structures.
(call-gate-descriptorbits-fix x) → fty::fixed
Function:
(defun call-gate-descriptorbits-fix (x) (declare (xargs :guard (call-gate-descriptorbits-p x))) (let ((__function__ 'call-gate-descriptorbits-fix)) (declare (ignorable __function__)) (mbe :logic (loghead 128 x) :exec x)))
Theorem:
(defthm call-gate-descriptorbits-p-of-call-gate-descriptorbits-fix (b* ((fty::fixed (call-gate-descriptorbits-fix x))) (call-gate-descriptorbits-p fty::fixed)) :rule-classes :rewrite)
Theorem:
(defthm call-gate-descriptorbits-fix-when-call-gate-descriptorbits-p (implies (call-gate-descriptorbits-p x) (equal (call-gate-descriptorbits-fix x) x)))
Function:
(defun call-gate-descriptorbits-equiv$inline (x y) (declare (xargs :guard (and (call-gate-descriptorbits-p x) (call-gate-descriptorbits-p y)))) (equal (call-gate-descriptorbits-fix x) (call-gate-descriptorbits-fix y)))
Theorem:
(defthm call-gate-descriptorbits-equiv-is-an-equivalence (and (booleanp (call-gate-descriptorbits-equiv x y)) (call-gate-descriptorbits-equiv x x) (implies (call-gate-descriptorbits-equiv x y) (call-gate-descriptorbits-equiv y x)) (implies (and (call-gate-descriptorbits-equiv x y) (call-gate-descriptorbits-equiv y z)) (call-gate-descriptorbits-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm call-gate-descriptorbits-equiv-implies-equal-call-gate-descriptorbits-fix-1 (implies (call-gate-descriptorbits-equiv x x-equiv) (equal (call-gate-descriptorbits-fix x) (call-gate-descriptorbits-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm call-gate-descriptorbits-fix-under-call-gate-descriptorbits-equiv (call-gate-descriptorbits-equiv (call-gate-descriptorbits-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))