AMD manual, Jun'23, Vol. 2, Figures 4-21 and 4-15.
This is a bitstruct type introduced by defbitstruct, represented as a unsigned 64-bit integer.
Function:
(defun data-segment-descriptorbits-p (x) (declare (xargs :guard t)) (let ((__function__ 'data-segment-descriptorbits-p)) (declare (ignorable __function__)) (mbe :logic (unsigned-byte-p 64 x) :exec (and (natp x) (< x 18446744073709551616)))))
Theorem:
(defthm data-segment-descriptorbits-p-when-unsigned-byte-p (implies (unsigned-byte-p 64 x) (data-segment-descriptorbits-p x)))
Theorem:
(defthm unsigned-byte-p-when-data-segment-descriptorbits-p (implies (data-segment-descriptorbits-p x) (unsigned-byte-p 64 x)))
Theorem:
(defthm data-segment-descriptorbits-p-compound-recognizer (implies (data-segment-descriptorbits-p x) (natp x)) :rule-classes :compound-recognizer)
Function:
(defun data-segment-descriptorbits-fix (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (let ((__function__ 'data-segment-descriptorbits-fix)) (declare (ignorable __function__)) (mbe :logic (loghead 64 x) :exec x)))
Theorem:
(defthm data-segment-descriptorbits-p-of-data-segment-descriptorbits-fix (b* ((fty::fixed (data-segment-descriptorbits-fix x))) (data-segment-descriptorbits-p fty::fixed)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits-fix-when-data-segment-descriptorbits-p (implies (data-segment-descriptorbits-p x) (equal (data-segment-descriptorbits-fix x) x)))
Function:
(defun data-segment-descriptorbits-equiv$inline (x y) (declare (xargs :guard (and (data-segment-descriptorbits-p x) (data-segment-descriptorbits-p y)))) (equal (data-segment-descriptorbits-fix x) (data-segment-descriptorbits-fix y)))
Theorem:
(defthm data-segment-descriptorbits-equiv-is-an-equivalence (and (booleanp (data-segment-descriptorbits-equiv x y)) (data-segment-descriptorbits-equiv x x) (implies (data-segment-descriptorbits-equiv x y) (data-segment-descriptorbits-equiv y x)) (implies (and (data-segment-descriptorbits-equiv x y) (data-segment-descriptorbits-equiv y z)) (data-segment-descriptorbits-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm data-segment-descriptorbits-equiv-implies-equal-data-segment-descriptorbits-fix-1 (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits-fix x) (data-segment-descriptorbits-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm data-segment-descriptorbits-fix-under-data-segment-descriptorbits-equiv (data-segment-descriptorbits-equiv (data-segment-descriptorbits-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Function:
(defun data-segment-descriptorbits (limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (declare (xargs :guard (and (16bits-p limit15-0) (16bits-p base15-0) (8bits-p base23-16) (bitp a) (bitp w) (bitp e) (bitp msb-of-type) (bitp s) (2bits-p dpl) (bitp p) (4bits-p limit19-16) (bitp avl) (bitp l) (bitp d/b) (bitp g) (8bits-p base31-24)))) (let ((__function__ 'data-segment-descriptorbits)) (declare (ignorable __function__)) (b* ((limit15-0 (mbe :logic (16bits-fix limit15-0) :exec limit15-0)) (base15-0 (mbe :logic (16bits-fix base15-0) :exec base15-0)) (base23-16 (mbe :logic (8bits-fix base23-16) :exec base23-16)) (a (mbe :logic (bfix a) :exec a)) (w (mbe :logic (bfix w) :exec w)) (e (mbe :logic (bfix e) :exec e)) (msb-of-type (mbe :logic (bfix msb-of-type) :exec msb-of-type)) (s (mbe :logic (bfix s) :exec s)) (dpl (mbe :logic (2bits-fix dpl) :exec dpl)) (p (mbe :logic (bfix p) :exec p)) (limit19-16 (mbe :logic (4bits-fix limit19-16) :exec limit19-16)) (avl (mbe :logic (bfix avl) :exec avl)) (l (mbe :logic (bfix l) :exec l)) (d/b (mbe :logic (bfix d/b) :exec d/b)) (g (mbe :logic (bfix g) :exec g)) (base31-24 (mbe :logic (8bits-fix base31-24) :exec base31-24))) (logapp 16 limit15-0 (logapp 16 base15-0 (logapp 8 base23-16 (logapp 1 a (logapp 1 w (logapp 1 e (logapp 1 msb-of-type (logapp 1 s (logapp 2 dpl (logapp 1 p (logapp 4 limit19-16 (logapp 1 avl (logapp 1 l (logapp 1 d/b (logapp 1 g base31-24))))))))))))))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-data-segment-descriptorbits (b* ((data-segment-descriptorbits (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24))) (data-segment-descriptorbits-p data-segment-descriptorbits)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits-of-16bits-fix-limit15-0 (equal (data-segment-descriptorbits (16bits-fix limit15-0) base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-16bits-equiv-congruence-on-limit15-0 (implies (16bits-equiv limit15-0 limit15-0-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0-equiv base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-16bits-fix-base15-0 (equal (data-segment-descriptorbits limit15-0 (16bits-fix base15-0) base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-16bits-equiv-congruence-on-base15-0 (implies (16bits-equiv base15-0 base15-0-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0-equiv base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-8bits-fix-base23-16 (equal (data-segment-descriptorbits limit15-0 base15-0 (8bits-fix base23-16) a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-8bits-equiv-congruence-on-base23-16 (implies (8bits-equiv base23-16 base23-16-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16-equiv a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-bfix-a (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 (bfix a) w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-bit-equiv-congruence-on-a (implies (bit-equiv a a-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a-equiv w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-bfix-w (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a (bfix w) e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-bit-equiv-congruence-on-w (implies (bit-equiv w w-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w-equiv e msb-of-type s dpl p limit19-16 avl l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-bfix-e (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w (bfix e) msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-bit-equiv-congruence-on-e (implies (bit-equiv e e-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e-equiv msb-of-type s dpl p limit19-16 avl l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-bfix-msb-of-type (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e (bfix msb-of-type) s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-bit-equiv-congruence-on-msb-of-type (implies (bit-equiv msb-of-type msb-of-type-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type-equiv s dpl p limit19-16 avl l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-bfix-s (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type (bfix s) dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-bit-equiv-congruence-on-s (implies (bit-equiv s s-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s-equiv dpl p limit19-16 avl l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-2bits-fix-dpl (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s (2bits-fix dpl) p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-2bits-equiv-congruence-on-dpl (implies (2bits-equiv dpl dpl-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl-equiv p limit19-16 avl l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-bfix-p (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl (bfix p) limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-bit-equiv-congruence-on-p (implies (bit-equiv p p-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p-equiv limit19-16 avl l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-4bits-fix-limit19-16 (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p (4bits-fix limit19-16) avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-4bits-equiv-congruence-on-limit19-16 (implies (4bits-equiv limit19-16 limit19-16-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16-equiv avl l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-bfix-avl (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 (bfix avl) l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-bit-equiv-congruence-on-avl (implies (bit-equiv avl avl-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl-equiv l d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-bfix-l (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl (bfix l) d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-bit-equiv-congruence-on-l (implies (bit-equiv l l-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l-equiv d/b g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-bfix-d/b (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l (bfix d/b) g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-bit-equiv-congruence-on-d/b (implies (bit-equiv d/b d/b-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b-equiv g base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-bfix-g (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b (bfix g) base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-bit-equiv-congruence-on-g (implies (bit-equiv g g-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g-equiv base31-24))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits-of-8bits-fix-base31-24 (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g (8bits-fix base31-24)) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)))
Theorem:
(defthm data-segment-descriptorbits-8bits-equiv-congruence-on-base31-24 (implies (8bits-equiv base31-24 base31-24-equiv) (equal (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24) (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24-equiv))) :rule-classes :congruence)
Function:
(defun data-segment-descriptorbits-equiv-under-mask (x x1 mask) (declare (xargs :guard (and (data-segment-descriptorbits-p x) (data-segment-descriptorbits-p x1) (integerp mask)))) (let ((__function__ 'data-segment-descriptorbits-equiv-under-mask)) (declare (ignorable __function__)) (fty::int-equiv-under-mask (data-segment-descriptorbits-fix x) (data-segment-descriptorbits-fix x1) mask)))
Function:
(defun data-segment-descriptorbits->limit15-0$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 0 :width 16)) :exec (the (unsigned-byte 16) (logand (the (unsigned-byte 16) 65535) (the (unsigned-byte 64) x)))))
Theorem:
(defthm 16bits-p-of-data-segment-descriptorbits->limit15-0 (b* ((limit15-0 (data-segment-descriptorbits->limit15-0$inline x))) (16bits-p limit15-0)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->limit15-0$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->limit15-0$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->limit15-0$inline x)))
Theorem:
(defthm data-segment-descriptorbits->limit15-0$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->limit15-0$inline x) (data-segment-descriptorbits->limit15-0$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->limit15-0-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->limit15-0 (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (16bits-fix limit15-0)))
Theorem:
(defthm data-segment-descriptorbits->limit15-0-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 65535) 0)) (equal (data-segment-descriptorbits->limit15-0 x) (data-segment-descriptorbits->limit15-0 y))))
Function:
(defun data-segment-descriptorbits->base15-0$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 16 :width 16)) :exec (the (unsigned-byte 16) (logand (the (unsigned-byte 16) 65535) (the (unsigned-byte 48) (ash (the (unsigned-byte 64) x) -16))))))
Theorem:
(defthm 16bits-p-of-data-segment-descriptorbits->base15-0 (b* ((base15-0 (data-segment-descriptorbits->base15-0$inline x))) (16bits-p base15-0)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->base15-0$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->base15-0$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->base15-0$inline x)))
Theorem:
(defthm data-segment-descriptorbits->base15-0$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->base15-0$inline x) (data-segment-descriptorbits->base15-0$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->base15-0-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->base15-0 (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (16bits-fix base15-0)))
Theorem:
(defthm data-segment-descriptorbits->base15-0-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 4294901760) 0)) (equal (data-segment-descriptorbits->base15-0 x) (data-segment-descriptorbits->base15-0 y))))
Function:
(defun data-segment-descriptorbits->base23-16$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 32 :width 8)) :exec (the (unsigned-byte 8) (logand (the (unsigned-byte 8) 255) (the (unsigned-byte 32) (ash (the (unsigned-byte 64) x) -32))))))
Theorem:
(defthm 8bits-p-of-data-segment-descriptorbits->base23-16 (b* ((base23-16 (data-segment-descriptorbits->base23-16$inline x))) (8bits-p base23-16)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->base23-16$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->base23-16$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->base23-16$inline x)))
Theorem:
(defthm data-segment-descriptorbits->base23-16$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->base23-16$inline x) (data-segment-descriptorbits->base23-16$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->base23-16-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->base23-16 (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (8bits-fix base23-16)))
Theorem:
(defthm data-segment-descriptorbits->base23-16-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 1095216660480) 0)) (equal (data-segment-descriptorbits->base23-16 x) (data-segment-descriptorbits->base23-16 y))))
Function:
(defun data-segment-descriptorbits->a$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 40 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 24) (ash (the (unsigned-byte 64) x) -40))))))
Theorem:
(defthm bitp-of-data-segment-descriptorbits->a (b* ((a (data-segment-descriptorbits->a$inline x))) (bitp a)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->a$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->a$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->a$inline x)))
Theorem:
(defthm data-segment-descriptorbits->a$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->a$inline x) (data-segment-descriptorbits->a$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->a-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->a (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (bfix a)))
Theorem:
(defthm data-segment-descriptorbits->a-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 1099511627776) 0)) (equal (data-segment-descriptorbits->a x) (data-segment-descriptorbits->a y))))
Function:
(defun data-segment-descriptorbits->w$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 41 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 23) (ash (the (unsigned-byte 64) x) -41))))))
Theorem:
(defthm bitp-of-data-segment-descriptorbits->w (b* ((w (data-segment-descriptorbits->w$inline x))) (bitp w)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->w$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->w$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->w$inline x)))
Theorem:
(defthm data-segment-descriptorbits->w$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->w$inline x) (data-segment-descriptorbits->w$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->w-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->w (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (bfix w)))
Theorem:
(defthm data-segment-descriptorbits->w-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 2199023255552) 0)) (equal (data-segment-descriptorbits->w x) (data-segment-descriptorbits->w y))))
Function:
(defun data-segment-descriptorbits->e$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 42 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 22) (ash (the (unsigned-byte 64) x) -42))))))
Theorem:
(defthm bitp-of-data-segment-descriptorbits->e (b* ((e (data-segment-descriptorbits->e$inline x))) (bitp e)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->e$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->e$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->e$inline x)))
Theorem:
(defthm data-segment-descriptorbits->e$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->e$inline x) (data-segment-descriptorbits->e$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->e-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->e (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (bfix e)))
Theorem:
(defthm data-segment-descriptorbits->e-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 4398046511104) 0)) (equal (data-segment-descriptorbits->e x) (data-segment-descriptorbits->e y))))
Function:
(defun data-segment-descriptorbits->msb-of-type$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 43 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 21) (ash (the (unsigned-byte 64) x) -43))))))
Theorem:
(defthm bitp-of-data-segment-descriptorbits->msb-of-type (b* ((msb-of-type (data-segment-descriptorbits->msb-of-type$inline x))) (bitp msb-of-type)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->msb-of-type$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->msb-of-type$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->msb-of-type$inline x)))
Theorem:
(defthm data-segment-descriptorbits->msb-of-type$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->msb-of-type$inline x) (data-segment-descriptorbits->msb-of-type$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->msb-of-type-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->msb-of-type (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (bfix msb-of-type)))
Theorem:
(defthm data-segment-descriptorbits->msb-of-type-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 8796093022208) 0)) (equal (data-segment-descriptorbits->msb-of-type x) (data-segment-descriptorbits->msb-of-type y))))
Function:
(defun data-segment-descriptorbits->s$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 44 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 20) (ash (the (unsigned-byte 64) x) -44))))))
Theorem:
(defthm bitp-of-data-segment-descriptorbits->s (b* ((s (data-segment-descriptorbits->s$inline x))) (bitp s)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->s$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->s$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->s$inline x)))
Theorem:
(defthm data-segment-descriptorbits->s$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->s$inline x) (data-segment-descriptorbits->s$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->s-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->s (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (bfix s)))
Theorem:
(defthm data-segment-descriptorbits->s-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 17592186044416) 0)) (equal (data-segment-descriptorbits->s x) (data-segment-descriptorbits->s y))))
Function:
(defun data-segment-descriptorbits->dpl$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 45 :width 2)) :exec (the (unsigned-byte 2) (logand (the (unsigned-byte 2) 3) (the (unsigned-byte 19) (ash (the (unsigned-byte 64) x) -45))))))
Theorem:
(defthm 2bits-p-of-data-segment-descriptorbits->dpl (b* ((dpl (data-segment-descriptorbits->dpl$inline x))) (2bits-p dpl)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->dpl$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->dpl$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->dpl$inline x)))
Theorem:
(defthm data-segment-descriptorbits->dpl$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->dpl$inline x) (data-segment-descriptorbits->dpl$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->dpl-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->dpl (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (2bits-fix dpl)))
Theorem:
(defthm data-segment-descriptorbits->dpl-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 105553116266496) 0)) (equal (data-segment-descriptorbits->dpl x) (data-segment-descriptorbits->dpl y))))
Function:
(defun data-segment-descriptorbits->p$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 47 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 17) (ash (the (unsigned-byte 64) x) -47))))))
Theorem:
(defthm bitp-of-data-segment-descriptorbits->p (b* ((p (data-segment-descriptorbits->p$inline x))) (bitp p)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->p$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->p$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->p$inline x)))
Theorem:
(defthm data-segment-descriptorbits->p$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->p$inline x) (data-segment-descriptorbits->p$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->p-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->p (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (bfix p)))
Theorem:
(defthm data-segment-descriptorbits->p-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 140737488355328) 0)) (equal (data-segment-descriptorbits->p x) (data-segment-descriptorbits->p y))))
Function:
(defun data-segment-descriptorbits->limit19-16$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 48 :width 4)) :exec (the (unsigned-byte 4) (logand (the (unsigned-byte 4) 15) (the (unsigned-byte 16) (ash (the (unsigned-byte 64) x) -48))))))
Theorem:
(defthm 4bits-p-of-data-segment-descriptorbits->limit19-16 (b* ((limit19-16 (data-segment-descriptorbits->limit19-16$inline x))) (4bits-p limit19-16)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->limit19-16$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->limit19-16$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->limit19-16$inline x)))
Theorem:
(defthm data-segment-descriptorbits->limit19-16$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->limit19-16$inline x) (data-segment-descriptorbits->limit19-16$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->limit19-16-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->limit19-16 (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (4bits-fix limit19-16)))
Theorem:
(defthm data-segment-descriptorbits->limit19-16-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 4222124650659840) 0)) (equal (data-segment-descriptorbits->limit19-16 x) (data-segment-descriptorbits->limit19-16 y))))
Function:
(defun data-segment-descriptorbits->avl$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 52 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 12) (ash (the (unsigned-byte 64) x) -52))))))
Theorem:
(defthm bitp-of-data-segment-descriptorbits->avl (b* ((avl (data-segment-descriptorbits->avl$inline x))) (bitp avl)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->avl$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->avl$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->avl$inline x)))
Theorem:
(defthm data-segment-descriptorbits->avl$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->avl$inline x) (data-segment-descriptorbits->avl$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->avl-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->avl (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (bfix avl)))
Theorem:
(defthm data-segment-descriptorbits->avl-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 4503599627370496) 0)) (equal (data-segment-descriptorbits->avl x) (data-segment-descriptorbits->avl y))))
Function:
(defun data-segment-descriptorbits->l$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 53 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 11) (ash (the (unsigned-byte 64) x) -53))))))
Theorem:
(defthm bitp-of-data-segment-descriptorbits->l (b* ((l (data-segment-descriptorbits->l$inline x))) (bitp l)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->l$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->l$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->l$inline x)))
Theorem:
(defthm data-segment-descriptorbits->l$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->l$inline x) (data-segment-descriptorbits->l$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->l-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->l (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (bfix l)))
Theorem:
(defthm data-segment-descriptorbits->l-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 9007199254740992) 0)) (equal (data-segment-descriptorbits->l x) (data-segment-descriptorbits->l y))))
Function:
(defun data-segment-descriptorbits->d/b$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 54 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 10) (ash (the (unsigned-byte 64) x) -54))))))
Theorem:
(defthm bitp-of-data-segment-descriptorbits->d/b (b* ((d/b (data-segment-descriptorbits->d/b$inline x))) (bitp d/b)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->d/b$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->d/b$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->d/b$inline x)))
Theorem:
(defthm data-segment-descriptorbits->d/b$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->d/b$inline x) (data-segment-descriptorbits->d/b$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->d/b-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->d/b (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (bfix d/b)))
Theorem:
(defthm data-segment-descriptorbits->d/b-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 18014398509481984) 0)) (equal (data-segment-descriptorbits->d/b x) (data-segment-descriptorbits->d/b y))))
Function:
(defun data-segment-descriptorbits->g$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 55 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 9) (ash (the (unsigned-byte 64) x) -55))))))
Theorem:
(defthm bitp-of-data-segment-descriptorbits->g (b* ((g (data-segment-descriptorbits->g$inline x))) (bitp g)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->g$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->g$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->g$inline x)))
Theorem:
(defthm data-segment-descriptorbits->g$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->g$inline x) (data-segment-descriptorbits->g$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->g-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->g (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (bfix g)))
Theorem:
(defthm data-segment-descriptorbits->g-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 36028797018963968) 0)) (equal (data-segment-descriptorbits->g x) (data-segment-descriptorbits->g y))))
Function:
(defun data-segment-descriptorbits->base31-24$inline (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (mbe :logic (let ((x (data-segment-descriptorbits-fix x))) (part-select x :low 56 :width 8)) :exec (the (unsigned-byte 8) (logand (the (unsigned-byte 8) 255) (the (unsigned-byte 8) (ash (the (unsigned-byte 64) x) -56))))))
Theorem:
(defthm 8bits-p-of-data-segment-descriptorbits->base31-24 (b* ((base31-24 (data-segment-descriptorbits->base31-24$inline x))) (8bits-p base31-24)) :rule-classes :rewrite)
Theorem:
(defthm data-segment-descriptorbits->base31-24$inline-of-data-segment-descriptorbits-fix-x (equal (data-segment-descriptorbits->base31-24$inline (data-segment-descriptorbits-fix x)) (data-segment-descriptorbits->base31-24$inline x)))
Theorem:
(defthm data-segment-descriptorbits->base31-24$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (data-segment-descriptorbits->base31-24$inline x) (data-segment-descriptorbits->base31-24$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm data-segment-descriptorbits->base31-24-of-data-segment-descriptorbits (equal (data-segment-descriptorbits->base31-24 (data-segment-descriptorbits limit15-0 base15-0 base23-16 a w e msb-of-type s dpl p limit19-16 avl l d/b g base31-24)) (8bits-fix base31-24)))
Theorem:
(defthm data-segment-descriptorbits->base31-24-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x data-segment-descriptorbits-equiv-under-mask) (data-segment-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 18374686479671623680) 0)) (equal (data-segment-descriptorbits->base31-24 x) (data-segment-descriptorbits->base31-24 y))))
Theorem:
(defthm data-segment-descriptorbits-fix-in-terms-of-data-segment-descriptorbits (equal (data-segment-descriptorbits-fix x) (change-data-segment-descriptorbits x)))
Function:
(defun !data-segment-descriptorbits->limit15-0$inline (limit15-0 x) (declare (xargs :guard (and (16bits-p limit15-0) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((limit15-0 (mbe :logic (16bits-fix limit15-0) :exec limit15-0)) (x (data-segment-descriptorbits-fix x))) (part-install limit15-0 x :width 16 :low 0)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 17) -65536))) (the (unsigned-byte 16) limit15-0)))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->limit15-0 (b* ((new-x (!data-segment-descriptorbits->limit15-0$inline limit15-0 x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->limit15-0$inline-of-16bits-fix-limit15-0 (equal (!data-segment-descriptorbits->limit15-0$inline (16bits-fix limit15-0) x) (!data-segment-descriptorbits->limit15-0$inline limit15-0 x)))
Theorem:
(defthm !data-segment-descriptorbits->limit15-0$inline-16bits-equiv-congruence-on-limit15-0 (implies (16bits-equiv limit15-0 limit15-0-equiv) (equal (!data-segment-descriptorbits->limit15-0$inline limit15-0 x) (!data-segment-descriptorbits->limit15-0$inline limit15-0-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->limit15-0$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->limit15-0$inline limit15-0 (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->limit15-0$inline limit15-0 x)))
Theorem:
(defthm !data-segment-descriptorbits->limit15-0$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->limit15-0$inline limit15-0 x) (!data-segment-descriptorbits->limit15-0$inline limit15-0 x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->limit15-0-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->limit15-0 limit15-0 x) (change-data-segment-descriptorbits x :limit15-0 limit15-0)))
Theorem:
(defthm data-segment-descriptorbits->limit15-0-of-!data-segment-descriptorbits->limit15-0 (b* ((?new-x (!data-segment-descriptorbits->limit15-0$inline limit15-0 x))) (equal (data-segment-descriptorbits->limit15-0 new-x) (16bits-fix limit15-0))))
Theorem:
(defthm !data-segment-descriptorbits->limit15-0-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->limit15-0$inline limit15-0 x))) (data-segment-descriptorbits-equiv-under-mask new-x x -65536)))
Function:
(defun !data-segment-descriptorbits->base15-0$inline (base15-0 x) (declare (xargs :guard (and (16bits-p base15-0) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((base15-0 (mbe :logic (16bits-fix base15-0) :exec base15-0)) (x (data-segment-descriptorbits-fix x))) (part-install base15-0 x :width 16 :low 16)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 33) -4294901761))) (the (unsigned-byte 32) (ash (the (unsigned-byte 16) base15-0) 16))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->base15-0 (b* ((new-x (!data-segment-descriptorbits->base15-0$inline base15-0 x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->base15-0$inline-of-16bits-fix-base15-0 (equal (!data-segment-descriptorbits->base15-0$inline (16bits-fix base15-0) x) (!data-segment-descriptorbits->base15-0$inline base15-0 x)))
Theorem:
(defthm !data-segment-descriptorbits->base15-0$inline-16bits-equiv-congruence-on-base15-0 (implies (16bits-equiv base15-0 base15-0-equiv) (equal (!data-segment-descriptorbits->base15-0$inline base15-0 x) (!data-segment-descriptorbits->base15-0$inline base15-0-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->base15-0$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->base15-0$inline base15-0 (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->base15-0$inline base15-0 x)))
Theorem:
(defthm !data-segment-descriptorbits->base15-0$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->base15-0$inline base15-0 x) (!data-segment-descriptorbits->base15-0$inline base15-0 x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->base15-0-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->base15-0 base15-0 x) (change-data-segment-descriptorbits x :base15-0 base15-0)))
Theorem:
(defthm data-segment-descriptorbits->base15-0-of-!data-segment-descriptorbits->base15-0 (b* ((?new-x (!data-segment-descriptorbits->base15-0$inline base15-0 x))) (equal (data-segment-descriptorbits->base15-0 new-x) (16bits-fix base15-0))))
Theorem:
(defthm !data-segment-descriptorbits->base15-0-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->base15-0$inline base15-0 x))) (data-segment-descriptorbits-equiv-under-mask new-x x -4294901761)))
Function:
(defun !data-segment-descriptorbits->base23-16$inline (base23-16 x) (declare (xargs :guard (and (8bits-p base23-16) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((base23-16 (mbe :logic (8bits-fix base23-16) :exec base23-16)) (x (data-segment-descriptorbits-fix x))) (part-install base23-16 x :width 8 :low 32)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 41) -1095216660481))) (the (unsigned-byte 40) (ash (the (unsigned-byte 8) base23-16) 32))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->base23-16 (b* ((new-x (!data-segment-descriptorbits->base23-16$inline base23-16 x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->base23-16$inline-of-8bits-fix-base23-16 (equal (!data-segment-descriptorbits->base23-16$inline (8bits-fix base23-16) x) (!data-segment-descriptorbits->base23-16$inline base23-16 x)))
Theorem:
(defthm !data-segment-descriptorbits->base23-16$inline-8bits-equiv-congruence-on-base23-16 (implies (8bits-equiv base23-16 base23-16-equiv) (equal (!data-segment-descriptorbits->base23-16$inline base23-16 x) (!data-segment-descriptorbits->base23-16$inline base23-16-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->base23-16$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->base23-16$inline base23-16 (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->base23-16$inline base23-16 x)))
Theorem:
(defthm !data-segment-descriptorbits->base23-16$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->base23-16$inline base23-16 x) (!data-segment-descriptorbits->base23-16$inline base23-16 x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->base23-16-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->base23-16 base23-16 x) (change-data-segment-descriptorbits x :base23-16 base23-16)))
Theorem:
(defthm data-segment-descriptorbits->base23-16-of-!data-segment-descriptorbits->base23-16 (b* ((?new-x (!data-segment-descriptorbits->base23-16$inline base23-16 x))) (equal (data-segment-descriptorbits->base23-16 new-x) (8bits-fix base23-16))))
Theorem:
(defthm !data-segment-descriptorbits->base23-16-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->base23-16$inline base23-16 x))) (data-segment-descriptorbits-equiv-under-mask new-x x -1095216660481)))
Function:
(defun !data-segment-descriptorbits->a$inline (a x) (declare (xargs :guard (and (bitp a) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((a (mbe :logic (bfix a) :exec a)) (x (data-segment-descriptorbits-fix x))) (part-install a x :width 1 :low 40)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 42) -1099511627777))) (the (unsigned-byte 41) (ash (the (unsigned-byte 1) a) 40))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->a (b* ((new-x (!data-segment-descriptorbits->a$inline a x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->a$inline-of-bfix-a (equal (!data-segment-descriptorbits->a$inline (bfix a) x) (!data-segment-descriptorbits->a$inline a x)))
Theorem:
(defthm !data-segment-descriptorbits->a$inline-bit-equiv-congruence-on-a (implies (bit-equiv a a-equiv) (equal (!data-segment-descriptorbits->a$inline a x) (!data-segment-descriptorbits->a$inline a-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->a$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->a$inline a (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->a$inline a x)))
Theorem:
(defthm !data-segment-descriptorbits->a$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->a$inline a x) (!data-segment-descriptorbits->a$inline a x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->a-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->a a x) (change-data-segment-descriptorbits x :a a)))
Theorem:
(defthm data-segment-descriptorbits->a-of-!data-segment-descriptorbits->a (b* ((?new-x (!data-segment-descriptorbits->a$inline a x))) (equal (data-segment-descriptorbits->a new-x) (bfix a))))
Theorem:
(defthm !data-segment-descriptorbits->a-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->a$inline a x))) (data-segment-descriptorbits-equiv-under-mask new-x x -1099511627777)))
Function:
(defun !data-segment-descriptorbits->w$inline (w x) (declare (xargs :guard (and (bitp w) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((w (mbe :logic (bfix w) :exec w)) (x (data-segment-descriptorbits-fix x))) (part-install w x :width 1 :low 41)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 43) -2199023255553))) (the (unsigned-byte 42) (ash (the (unsigned-byte 1) w) 41))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->w (b* ((new-x (!data-segment-descriptorbits->w$inline w x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->w$inline-of-bfix-w (equal (!data-segment-descriptorbits->w$inline (bfix w) x) (!data-segment-descriptorbits->w$inline w x)))
Theorem:
(defthm !data-segment-descriptorbits->w$inline-bit-equiv-congruence-on-w (implies (bit-equiv w w-equiv) (equal (!data-segment-descriptorbits->w$inline w x) (!data-segment-descriptorbits->w$inline w-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->w$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->w$inline w (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->w$inline w x)))
Theorem:
(defthm !data-segment-descriptorbits->w$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->w$inline w x) (!data-segment-descriptorbits->w$inline w x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->w-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->w w x) (change-data-segment-descriptorbits x :w w)))
Theorem:
(defthm data-segment-descriptorbits->w-of-!data-segment-descriptorbits->w (b* ((?new-x (!data-segment-descriptorbits->w$inline w x))) (equal (data-segment-descriptorbits->w new-x) (bfix w))))
Theorem:
(defthm !data-segment-descriptorbits->w-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->w$inline w x))) (data-segment-descriptorbits-equiv-under-mask new-x x -2199023255553)))
Function:
(defun !data-segment-descriptorbits->e$inline (e x) (declare (xargs :guard (and (bitp e) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((e (mbe :logic (bfix e) :exec e)) (x (data-segment-descriptorbits-fix x))) (part-install e x :width 1 :low 42)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 44) -4398046511105))) (the (unsigned-byte 43) (ash (the (unsigned-byte 1) e) 42))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->e (b* ((new-x (!data-segment-descriptorbits->e$inline e x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->e$inline-of-bfix-e (equal (!data-segment-descriptorbits->e$inline (bfix e) x) (!data-segment-descriptorbits->e$inline e x)))
Theorem:
(defthm !data-segment-descriptorbits->e$inline-bit-equiv-congruence-on-e (implies (bit-equiv e e-equiv) (equal (!data-segment-descriptorbits->e$inline e x) (!data-segment-descriptorbits->e$inline e-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->e$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->e$inline e (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->e$inline e x)))
Theorem:
(defthm !data-segment-descriptorbits->e$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->e$inline e x) (!data-segment-descriptorbits->e$inline e x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->e-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->e e x) (change-data-segment-descriptorbits x :e e)))
Theorem:
(defthm data-segment-descriptorbits->e-of-!data-segment-descriptorbits->e (b* ((?new-x (!data-segment-descriptorbits->e$inline e x))) (equal (data-segment-descriptorbits->e new-x) (bfix e))))
Theorem:
(defthm !data-segment-descriptorbits->e-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->e$inline e x))) (data-segment-descriptorbits-equiv-under-mask new-x x -4398046511105)))
Function:
(defun !data-segment-descriptorbits->msb-of-type$inline (msb-of-type x) (declare (xargs :guard (and (bitp msb-of-type) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((msb-of-type (mbe :logic (bfix msb-of-type) :exec msb-of-type)) (x (data-segment-descriptorbits-fix x))) (part-install msb-of-type x :width 1 :low 43)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 45) -8796093022209))) (the (unsigned-byte 44) (ash (the (unsigned-byte 1) msb-of-type) 43))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->msb-of-type (b* ((new-x (!data-segment-descriptorbits->msb-of-type$inline msb-of-type x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->msb-of-type$inline-of-bfix-msb-of-type (equal (!data-segment-descriptorbits->msb-of-type$inline (bfix msb-of-type) x) (!data-segment-descriptorbits->msb-of-type$inline msb-of-type x)))
Theorem:
(defthm !data-segment-descriptorbits->msb-of-type$inline-bit-equiv-congruence-on-msb-of-type (implies (bit-equiv msb-of-type msb-of-type-equiv) (equal (!data-segment-descriptorbits->msb-of-type$inline msb-of-type x) (!data-segment-descriptorbits->msb-of-type$inline msb-of-type-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->msb-of-type$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->msb-of-type$inline msb-of-type (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->msb-of-type$inline msb-of-type x)))
Theorem:
(defthm !data-segment-descriptorbits->msb-of-type$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->msb-of-type$inline msb-of-type x) (!data-segment-descriptorbits->msb-of-type$inline msb-of-type x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->msb-of-type-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->msb-of-type msb-of-type x) (change-data-segment-descriptorbits x :msb-of-type msb-of-type)))
Theorem:
(defthm data-segment-descriptorbits->msb-of-type-of-!data-segment-descriptorbits->msb-of-type (b* ((?new-x (!data-segment-descriptorbits->msb-of-type$inline msb-of-type x))) (equal (data-segment-descriptorbits->msb-of-type new-x) (bfix msb-of-type))))
Theorem:
(defthm !data-segment-descriptorbits->msb-of-type-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->msb-of-type$inline msb-of-type x))) (data-segment-descriptorbits-equiv-under-mask new-x x -8796093022209)))
Function:
(defun !data-segment-descriptorbits->s$inline (s x) (declare (xargs :guard (and (bitp s) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((s (mbe :logic (bfix s) :exec s)) (x (data-segment-descriptorbits-fix x))) (part-install s x :width 1 :low 44)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 46) -17592186044417))) (the (unsigned-byte 45) (ash (the (unsigned-byte 1) s) 44))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->s (b* ((new-x (!data-segment-descriptorbits->s$inline s x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->s$inline-of-bfix-s (equal (!data-segment-descriptorbits->s$inline (bfix s) x) (!data-segment-descriptorbits->s$inline s x)))
Theorem:
(defthm !data-segment-descriptorbits->s$inline-bit-equiv-congruence-on-s (implies (bit-equiv s s-equiv) (equal (!data-segment-descriptorbits->s$inline s x) (!data-segment-descriptorbits->s$inline s-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->s$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->s$inline s (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->s$inline s x)))
Theorem:
(defthm !data-segment-descriptorbits->s$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->s$inline s x) (!data-segment-descriptorbits->s$inline s x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->s-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->s s x) (change-data-segment-descriptorbits x :s s)))
Theorem:
(defthm data-segment-descriptorbits->s-of-!data-segment-descriptorbits->s (b* ((?new-x (!data-segment-descriptorbits->s$inline s x))) (equal (data-segment-descriptorbits->s new-x) (bfix s))))
Theorem:
(defthm !data-segment-descriptorbits->s-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->s$inline s x))) (data-segment-descriptorbits-equiv-under-mask new-x x -17592186044417)))
Function:
(defun !data-segment-descriptorbits->dpl$inline (dpl x) (declare (xargs :guard (and (2bits-p dpl) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((dpl (mbe :logic (2bits-fix dpl) :exec dpl)) (x (data-segment-descriptorbits-fix x))) (part-install dpl x :width 2 :low 45)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 48) -105553116266497))) (the (unsigned-byte 47) (ash (the (unsigned-byte 2) dpl) 45))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->dpl (b* ((new-x (!data-segment-descriptorbits->dpl$inline dpl x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->dpl$inline-of-2bits-fix-dpl (equal (!data-segment-descriptorbits->dpl$inline (2bits-fix dpl) x) (!data-segment-descriptorbits->dpl$inline dpl x)))
Theorem:
(defthm !data-segment-descriptorbits->dpl$inline-2bits-equiv-congruence-on-dpl (implies (2bits-equiv dpl dpl-equiv) (equal (!data-segment-descriptorbits->dpl$inline dpl x) (!data-segment-descriptorbits->dpl$inline dpl-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->dpl$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->dpl$inline dpl (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->dpl$inline dpl x)))
Theorem:
(defthm !data-segment-descriptorbits->dpl$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->dpl$inline dpl x) (!data-segment-descriptorbits->dpl$inline dpl x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->dpl-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->dpl dpl x) (change-data-segment-descriptorbits x :dpl dpl)))
Theorem:
(defthm data-segment-descriptorbits->dpl-of-!data-segment-descriptorbits->dpl (b* ((?new-x (!data-segment-descriptorbits->dpl$inline dpl x))) (equal (data-segment-descriptorbits->dpl new-x) (2bits-fix dpl))))
Theorem:
(defthm !data-segment-descriptorbits->dpl-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->dpl$inline dpl x))) (data-segment-descriptorbits-equiv-under-mask new-x x -105553116266497)))
Function:
(defun !data-segment-descriptorbits->p$inline (p x) (declare (xargs :guard (and (bitp p) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((p (mbe :logic (bfix p) :exec p)) (x (data-segment-descriptorbits-fix x))) (part-install p x :width 1 :low 47)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 49) -140737488355329))) (the (unsigned-byte 48) (ash (the (unsigned-byte 1) p) 47))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->p (b* ((new-x (!data-segment-descriptorbits->p$inline p x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->p$inline-of-bfix-p (equal (!data-segment-descriptorbits->p$inline (bfix p) x) (!data-segment-descriptorbits->p$inline p x)))
Theorem:
(defthm !data-segment-descriptorbits->p$inline-bit-equiv-congruence-on-p (implies (bit-equiv p p-equiv) (equal (!data-segment-descriptorbits->p$inline p x) (!data-segment-descriptorbits->p$inline p-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->p$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->p$inline p (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->p$inline p x)))
Theorem:
(defthm !data-segment-descriptorbits->p$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->p$inline p x) (!data-segment-descriptorbits->p$inline p x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->p-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->p p x) (change-data-segment-descriptorbits x :p p)))
Theorem:
(defthm data-segment-descriptorbits->p-of-!data-segment-descriptorbits->p (b* ((?new-x (!data-segment-descriptorbits->p$inline p x))) (equal (data-segment-descriptorbits->p new-x) (bfix p))))
Theorem:
(defthm !data-segment-descriptorbits->p-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->p$inline p x))) (data-segment-descriptorbits-equiv-under-mask new-x x -140737488355329)))
Function:
(defun !data-segment-descriptorbits->limit19-16$inline (limit19-16 x) (declare (xargs :guard (and (4bits-p limit19-16) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((limit19-16 (mbe :logic (4bits-fix limit19-16) :exec limit19-16)) (x (data-segment-descriptorbits-fix x))) (part-install limit19-16 x :width 4 :low 48)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 53) -4222124650659841))) (the (unsigned-byte 52) (ash (the (unsigned-byte 4) limit19-16) 48))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->limit19-16 (b* ((new-x (!data-segment-descriptorbits->limit19-16$inline limit19-16 x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->limit19-16$inline-of-4bits-fix-limit19-16 (equal (!data-segment-descriptorbits->limit19-16$inline (4bits-fix limit19-16) x) (!data-segment-descriptorbits->limit19-16$inline limit19-16 x)))
Theorem:
(defthm !data-segment-descriptorbits->limit19-16$inline-4bits-equiv-congruence-on-limit19-16 (implies (4bits-equiv limit19-16 limit19-16-equiv) (equal (!data-segment-descriptorbits->limit19-16$inline limit19-16 x) (!data-segment-descriptorbits->limit19-16$inline limit19-16-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->limit19-16$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->limit19-16$inline limit19-16 (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->limit19-16$inline limit19-16 x)))
Theorem:
(defthm !data-segment-descriptorbits->limit19-16$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->limit19-16$inline limit19-16 x) (!data-segment-descriptorbits->limit19-16$inline limit19-16 x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->limit19-16-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->limit19-16 limit19-16 x) (change-data-segment-descriptorbits x :limit19-16 limit19-16)))
Theorem:
(defthm data-segment-descriptorbits->limit19-16-of-!data-segment-descriptorbits->limit19-16 (b* ((?new-x (!data-segment-descriptorbits->limit19-16$inline limit19-16 x))) (equal (data-segment-descriptorbits->limit19-16 new-x) (4bits-fix limit19-16))))
Theorem:
(defthm !data-segment-descriptorbits->limit19-16-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->limit19-16$inline limit19-16 x))) (data-segment-descriptorbits-equiv-under-mask new-x x -4222124650659841)))
Function:
(defun !data-segment-descriptorbits->avl$inline (avl x) (declare (xargs :guard (and (bitp avl) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((avl (mbe :logic (bfix avl) :exec avl)) (x (data-segment-descriptorbits-fix x))) (part-install avl x :width 1 :low 52)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 54) -4503599627370497))) (the (unsigned-byte 53) (ash (the (unsigned-byte 1) avl) 52))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->avl (b* ((new-x (!data-segment-descriptorbits->avl$inline avl x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->avl$inline-of-bfix-avl (equal (!data-segment-descriptorbits->avl$inline (bfix avl) x) (!data-segment-descriptorbits->avl$inline avl x)))
Theorem:
(defthm !data-segment-descriptorbits->avl$inline-bit-equiv-congruence-on-avl (implies (bit-equiv avl avl-equiv) (equal (!data-segment-descriptorbits->avl$inline avl x) (!data-segment-descriptorbits->avl$inline avl-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->avl$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->avl$inline avl (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->avl$inline avl x)))
Theorem:
(defthm !data-segment-descriptorbits->avl$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->avl$inline avl x) (!data-segment-descriptorbits->avl$inline avl x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->avl-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->avl avl x) (change-data-segment-descriptorbits x :avl avl)))
Theorem:
(defthm data-segment-descriptorbits->avl-of-!data-segment-descriptorbits->avl (b* ((?new-x (!data-segment-descriptorbits->avl$inline avl x))) (equal (data-segment-descriptorbits->avl new-x) (bfix avl))))
Theorem:
(defthm !data-segment-descriptorbits->avl-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->avl$inline avl x))) (data-segment-descriptorbits-equiv-under-mask new-x x -4503599627370497)))
Function:
(defun !data-segment-descriptorbits->l$inline (l x) (declare (xargs :guard (and (bitp l) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((l (mbe :logic (bfix l) :exec l)) (x (data-segment-descriptorbits-fix x))) (part-install l x :width 1 :low 53)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 55) -9007199254740993))) (the (unsigned-byte 54) (ash (the (unsigned-byte 1) l) 53))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->l (b* ((new-x (!data-segment-descriptorbits->l$inline l x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->l$inline-of-bfix-l (equal (!data-segment-descriptorbits->l$inline (bfix l) x) (!data-segment-descriptorbits->l$inline l x)))
Theorem:
(defthm !data-segment-descriptorbits->l$inline-bit-equiv-congruence-on-l (implies (bit-equiv l l-equiv) (equal (!data-segment-descriptorbits->l$inline l x) (!data-segment-descriptorbits->l$inline l-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->l$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->l$inline l (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->l$inline l x)))
Theorem:
(defthm !data-segment-descriptorbits->l$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->l$inline l x) (!data-segment-descriptorbits->l$inline l x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->l-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->l l x) (change-data-segment-descriptorbits x :l l)))
Theorem:
(defthm data-segment-descriptorbits->l-of-!data-segment-descriptorbits->l (b* ((?new-x (!data-segment-descriptorbits->l$inline l x))) (equal (data-segment-descriptorbits->l new-x) (bfix l))))
Theorem:
(defthm !data-segment-descriptorbits->l-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->l$inline l x))) (data-segment-descriptorbits-equiv-under-mask new-x x -9007199254740993)))
Function:
(defun !data-segment-descriptorbits->d/b$inline (d/b x) (declare (xargs :guard (and (bitp d/b) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((d/b (mbe :logic (bfix d/b) :exec d/b)) (x (data-segment-descriptorbits-fix x))) (part-install d/b x :width 1 :low 54)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 56) -18014398509481985))) (the (unsigned-byte 55) (ash (the (unsigned-byte 1) d/b) 54))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->d/b (b* ((new-x (!data-segment-descriptorbits->d/b$inline d/b x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->d/b$inline-of-bfix-d/b (equal (!data-segment-descriptorbits->d/b$inline (bfix d/b) x) (!data-segment-descriptorbits->d/b$inline d/b x)))
Theorem:
(defthm !data-segment-descriptorbits->d/b$inline-bit-equiv-congruence-on-d/b (implies (bit-equiv d/b d/b-equiv) (equal (!data-segment-descriptorbits->d/b$inline d/b x) (!data-segment-descriptorbits->d/b$inline d/b-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->d/b$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->d/b$inline d/b (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->d/b$inline d/b x)))
Theorem:
(defthm !data-segment-descriptorbits->d/b$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->d/b$inline d/b x) (!data-segment-descriptorbits->d/b$inline d/b x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->d/b-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->d/b d/b x) (change-data-segment-descriptorbits x :d/b d/b)))
Theorem:
(defthm data-segment-descriptorbits->d/b-of-!data-segment-descriptorbits->d/b (b* ((?new-x (!data-segment-descriptorbits->d/b$inline d/b x))) (equal (data-segment-descriptorbits->d/b new-x) (bfix d/b))))
Theorem:
(defthm !data-segment-descriptorbits->d/b-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->d/b$inline d/b x))) (data-segment-descriptorbits-equiv-under-mask new-x x -18014398509481985)))
Function:
(defun !data-segment-descriptorbits->g$inline (g x) (declare (xargs :guard (and (bitp g) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((g (mbe :logic (bfix g) :exec g)) (x (data-segment-descriptorbits-fix x))) (part-install g x :width 1 :low 55)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 57) -36028797018963969))) (the (unsigned-byte 56) (ash (the (unsigned-byte 1) g) 55))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->g (b* ((new-x (!data-segment-descriptorbits->g$inline g x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->g$inline-of-bfix-g (equal (!data-segment-descriptorbits->g$inline (bfix g) x) (!data-segment-descriptorbits->g$inline g x)))
Theorem:
(defthm !data-segment-descriptorbits->g$inline-bit-equiv-congruence-on-g (implies (bit-equiv g g-equiv) (equal (!data-segment-descriptorbits->g$inline g x) (!data-segment-descriptorbits->g$inline g-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->g$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->g$inline g (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->g$inline g x)))
Theorem:
(defthm !data-segment-descriptorbits->g$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->g$inline g x) (!data-segment-descriptorbits->g$inline g x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->g-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->g g x) (change-data-segment-descriptorbits x :g g)))
Theorem:
(defthm data-segment-descriptorbits->g-of-!data-segment-descriptorbits->g (b* ((?new-x (!data-segment-descriptorbits->g$inline g x))) (equal (data-segment-descriptorbits->g new-x) (bfix g))))
Theorem:
(defthm !data-segment-descriptorbits->g-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->g$inline g x))) (data-segment-descriptorbits-equiv-under-mask new-x x -36028797018963969)))
Function:
(defun !data-segment-descriptorbits->base31-24$inline (base31-24 x) (declare (xargs :guard (and (8bits-p base31-24) (data-segment-descriptorbits-p x)))) (mbe :logic (b* ((base31-24 (mbe :logic (8bits-fix base31-24) :exec base31-24)) (x (data-segment-descriptorbits-fix x))) (part-install base31-24 x :width 8 :low 56)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 65) -18374686479671623681))) (the (unsigned-byte 64) (ash (the (unsigned-byte 8) base31-24) 56))))))
Theorem:
(defthm data-segment-descriptorbits-p-of-!data-segment-descriptorbits->base31-24 (b* ((new-x (!data-segment-descriptorbits->base31-24$inline base31-24 x))) (data-segment-descriptorbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !data-segment-descriptorbits->base31-24$inline-of-8bits-fix-base31-24 (equal (!data-segment-descriptorbits->base31-24$inline (8bits-fix base31-24) x) (!data-segment-descriptorbits->base31-24$inline base31-24 x)))
Theorem:
(defthm !data-segment-descriptorbits->base31-24$inline-8bits-equiv-congruence-on-base31-24 (implies (8bits-equiv base31-24 base31-24-equiv) (equal (!data-segment-descriptorbits->base31-24$inline base31-24 x) (!data-segment-descriptorbits->base31-24$inline base31-24-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->base31-24$inline-of-data-segment-descriptorbits-fix-x (equal (!data-segment-descriptorbits->base31-24$inline base31-24 (data-segment-descriptorbits-fix x)) (!data-segment-descriptorbits->base31-24$inline base31-24 x)))
Theorem:
(defthm !data-segment-descriptorbits->base31-24$inline-data-segment-descriptorbits-equiv-congruence-on-x (implies (data-segment-descriptorbits-equiv x x-equiv) (equal (!data-segment-descriptorbits->base31-24$inline base31-24 x) (!data-segment-descriptorbits->base31-24$inline base31-24 x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !data-segment-descriptorbits->base31-24-is-data-segment-descriptorbits (equal (!data-segment-descriptorbits->base31-24 base31-24 x) (change-data-segment-descriptorbits x :base31-24 base31-24)))
Theorem:
(defthm data-segment-descriptorbits->base31-24-of-!data-segment-descriptorbits->base31-24 (b* ((?new-x (!data-segment-descriptorbits->base31-24$inline base31-24 x))) (equal (data-segment-descriptorbits->base31-24 new-x) (8bits-fix base31-24))))
Theorem:
(defthm !data-segment-descriptorbits->base31-24-equiv-under-mask (b* ((?new-x (!data-segment-descriptorbits->base31-24$inline base31-24 x))) (data-segment-descriptorbits-equiv-under-mask new-x x 72057594037927935)))
Function:
(defun data-segment-descriptorbits-debug (x) (declare (xargs :guard (data-segment-descriptorbits-p x))) (let ((__function__ 'data-segment-descriptorbits-debug)) (declare (ignorable __function__)) (b* (((data-segment-descriptorbits x))) (cons (cons 'limit15-0 x.limit15-0) (cons (cons 'base15-0 x.base15-0) (cons (cons 'base23-16 x.base23-16) (cons (cons 'a x.a) (cons (cons 'w x.w) (cons (cons 'e x.e) (cons (cons 'msb-of-type x.msb-of-type) (cons (cons 's x.s) (cons (cons 'dpl x.dpl) (cons (cons 'p x.p) (cons (cons 'limit19-16 x.limit19-16) (cons (cons 'avl x.avl) (cons (cons 'l x.l) (cons (cons 'd/b x.d/b) (cons (cons 'g x.g) (cons (cons 'base31-24 x.base31-24) nil)))))))))))))))))))