Access the |X86ISA|::|RES| field of a evex-byte2 bit structure.
(evex-byte2->res x) → res
Function:
(defun evex-byte2->res$inline (x) (declare (xargs :guard (evex-byte2-p x))) (mbe :logic (let ((x (evex-byte2-fix x))) (part-select x :low 2 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 6) (ash (the (unsigned-byte 8) x) -2))))))
Theorem:
(defthm bitp-of-evex-byte2->res (b* ((res (evex-byte2->res$inline x))) (bitp res)) :rule-classes :rewrite)
Theorem:
(defthm evex-byte2->res$inline-of-evex-byte2-fix-x (equal (evex-byte2->res$inline (evex-byte2-fix x)) (evex-byte2->res$inline x)))
Theorem:
(defthm evex-byte2->res$inline-evex-byte2-equiv-congruence-on-x (implies (evex-byte2-equiv x x-equiv) (equal (evex-byte2->res$inline x) (evex-byte2->res$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm evex-byte2->res-of-evex-byte2 (equal (evex-byte2->res (evex-byte2 pp res vvvv w)) (bfix res)))
Theorem:
(defthm evex-byte2->res-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x evex-byte2-equiv-under-mask) (evex-byte2-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 4) 0)) (equal (evex-byte2->res x) (evex-byte2->res y))))