Access the |X86ISA|::|V-PRIME| field of a evex-byte3 bit structure.
(evex-byte3->v-prime x) → v-prime
Function:
(defun evex-byte3->v-prime$inline (x) (declare (xargs :guard (evex-byte3-p x))) (mbe :logic (let ((x (evex-byte3-fix x))) (part-select x :low 3 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 5) (ash (the (unsigned-byte 8) x) -3))))))
Theorem:
(defthm bitp-of-evex-byte3->v-prime (b* ((v-prime (evex-byte3->v-prime$inline x))) (bitp v-prime)) :rule-classes :rewrite)
Theorem:
(defthm evex-byte3->v-prime$inline-of-evex-byte3-fix-x (equal (evex-byte3->v-prime$inline (evex-byte3-fix x)) (evex-byte3->v-prime$inline x)))
Theorem:
(defthm evex-byte3->v-prime$inline-evex-byte3-equiv-congruence-on-x (implies (evex-byte3-equiv x x-equiv) (equal (evex-byte3->v-prime$inline x) (evex-byte3->v-prime$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm evex-byte3->v-prime-of-evex-byte3 (equal (evex-byte3->v-prime (evex-byte3 aaa v-prime b vl/rc z)) (bfix v-prime)))
Theorem:
(defthm evex-byte3->v-prime-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x evex-byte3-equiv-under-mask) (evex-byte3-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 8) 0)) (equal (evex-byte3->v-prime x) (evex-byte3->v-prime y))))