Access the |X86ISA|::|XD| field of a ia32e-page-tablesbits bit structure.
(ia32e-page-tablesbits->xd x) → xd
Function:
(defun ia32e-page-tablesbits->xd$inline (x) (declare (xargs :guard (ia32e-page-tablesbits-p x))) (mbe :logic (let ((x (ia32e-page-tablesbits-fix x))) (part-select x :low 63 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 1) (ash (the (unsigned-byte 64) x) -63))))))
Theorem:
(defthm bitp-of-ia32e-page-tablesbits->xd (b* ((xd (ia32e-page-tablesbits->xd$inline x))) (bitp xd)) :rule-classes :rewrite)
Theorem:
(defthm ia32e-page-tablesbits->xd$inline-of-ia32e-page-tablesbits-fix-x (equal (ia32e-page-tablesbits->xd$inline (ia32e-page-tablesbits-fix x)) (ia32e-page-tablesbits->xd$inline x)))
Theorem:
(defthm ia32e-page-tablesbits->xd$inline-ia32e-page-tablesbits-equiv-congruence-on-x (implies (ia32e-page-tablesbits-equiv x x-equiv) (equal (ia32e-page-tablesbits->xd$inline x) (ia32e-page-tablesbits->xd$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm ia32e-page-tablesbits->xd-of-ia32e-page-tablesbits (equal (ia32e-page-tablesbits->xd (ia32e-page-tablesbits p r/w u/s pwt pcd a d ps res1 reference-addr res2 xd)) (bfix xd)))
Theorem:
(defthm ia32e-page-tablesbits->xd-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x ia32e-page-tablesbits-equiv-under-mask) (ia32e-page-tablesbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 9223372036854775808) 0)) (equal (ia32e-page-tablesbits->xd x) (ia32e-page-tablesbits->xd y))))