Access the |X86ISA|::|RES2| field of a ia32_eferbits bit structure.
(ia32_eferbits->res2 x) → res2
Function:
(defun ia32_eferbits->res2$inline (x) (declare (xargs :guard (ia32_eferbits-p x))) (mbe :logic (let ((x (ia32_eferbits-fix x))) (part-select x :low 9 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 3) (ash (the (unsigned-byte 12) x) -9))))))
Theorem:
(defthm bitp-of-ia32_eferbits->res2 (b* ((res2 (ia32_eferbits->res2$inline x))) (bitp res2)) :rule-classes :rewrite)
Theorem:
(defthm ia32_eferbits->res2$inline-of-ia32_eferbits-fix-x (equal (ia32_eferbits->res2$inline (ia32_eferbits-fix x)) (ia32_eferbits->res2$inline x)))
Theorem:
(defthm ia32_eferbits->res2$inline-ia32_eferbits-equiv-congruence-on-x (implies (ia32_eferbits-equiv x x-equiv) (equal (ia32_eferbits->res2$inline x) (ia32_eferbits->res2$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm ia32_eferbits->res2-of-ia32_eferbits (equal (ia32_eferbits->res2 (ia32_eferbits sce res1 lme res2 lma nxe)) (bfix res2)))
Theorem:
(defthm ia32_eferbits->res2-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x ia32_eferbits-equiv-under-mask) (ia32_eferbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 512) 0)) (equal (ia32_eferbits->res2 x) (ia32_eferbits->res2 y))))