Access the |X86ISA|::|ZM| field of a mxcsrbits bit structure.
(mxcsrbits->zm x) → zm
Function:
(defun mxcsrbits->zm$inline (x) (declare (xargs :guard (mxcsrbits-p x))) (mbe :logic (let ((x (mxcsrbits-fix x))) (part-select x :low 9 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 23) (ash (the (unsigned-byte 32) x) -9))))))
Theorem:
(defthm bitp-of-mxcsrbits->zm (b* ((zm (mxcsrbits->zm$inline x))) (bitp zm)) :rule-classes :rewrite)
Theorem:
(defthm mxcsrbits->zm$inline-of-mxcsrbits-fix-x (equal (mxcsrbits->zm$inline (mxcsrbits-fix x)) (mxcsrbits->zm$inline x)))
Theorem:
(defthm mxcsrbits->zm$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (mxcsrbits->zm$inline x) (mxcsrbits->zm$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm mxcsrbits->zm-of-mxcsrbits (equal (mxcsrbits->zm (mxcsrbits ie de ze oe ue pe daz im dm zm om um pm rc ftz reserved)) (bfix zm)))
Theorem:
(defthm mxcsrbits->zm-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x mxcsrbits-equiv-under-mask) (mxcsrbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 512) 0)) (equal (mxcsrbits->zm x) (mxcsrbits->zm y))))