Access the |X86ISA|::|REP| field of a prefixes bit structure.
(prefixes->rep x) → rep
Function:
(defun prefixes->rep$inline (x) (declare (xargs :guard (prefixes-p x))) (mbe :logic (let ((x (prefixes-fix x))) (part-select x :low 12 :width 8)) :exec (the (unsigned-byte 8) (logand (the (unsigned-byte 8) 255) (the (unsigned-byte 40) (ash (the (unsigned-byte 52) x) -12))))))
Theorem:
(defthm 8bits-p-of-prefixes->rep (b* ((rep (prefixes->rep$inline x))) (8bits-p rep)) :rule-classes :rewrite)
Theorem:
(defthm prefixes->rep$inline-of-prefixes-fix-x (equal (prefixes->rep$inline (prefixes-fix x)) (prefixes->rep$inline x)))
Theorem:
(defthm prefixes->rep$inline-prefixes-equiv-congruence-on-x (implies (prefixes-equiv x x-equiv) (equal (prefixes->rep$inline x) (prefixes->rep$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm prefixes->rep-of-prefixes (equal (prefixes->rep (prefixes num lck rep seg opr adr nxt)) (8bits-fix rep)))
Theorem:
(defthm prefixes->rep-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x prefixes-equiv-under-mask) (prefixes-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 1044480) 0)) (equal (prefixes->rep x) (prefixes->rep y))))