Access the |X86ISA|::|BYTE0| field of a vex-prefixes bit structure.
(vex-prefixes->byte0 x) → byte0
Function:
(defun vex-prefixes->byte0$inline (x) (declare (xargs :guard (vex-prefixes-p x))) (mbe :logic (let ((x (vex-prefixes-fix x))) (part-select x :low 0 :width 8)) :exec (the (unsigned-byte 8) (logand (the (unsigned-byte 8) 255) (the (unsigned-byte 24) x)))))
Theorem:
(defthm 8bits-p-of-vex-prefixes->byte0 (b* ((byte0 (vex-prefixes->byte0$inline x))) (8bits-p byte0)) :rule-classes :rewrite)
Theorem:
(defthm vex-prefixes->byte0$inline-of-vex-prefixes-fix-x (equal (vex-prefixes->byte0$inline (vex-prefixes-fix x)) (vex-prefixes->byte0$inline x)))
Theorem:
(defthm vex-prefixes->byte0$inline-vex-prefixes-equiv-congruence-on-x (implies (vex-prefixes-equiv x x-equiv) (equal (vex-prefixes->byte0$inline x) (vex-prefixes->byte0$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm vex-prefixes->byte0-of-vex-prefixes (equal (vex-prefixes->byte0 (vex-prefixes byte0 byte1 byte2)) (8bits-fix byte0)))
Theorem:
(defthm vex-prefixes->byte0-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x vex-prefixes-equiv-under-mask) (vex-prefixes-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 255) 0)) (equal (vex-prefixes->byte0 x) (vex-prefixes->byte0 y))))