Access the |ACL2|::|L| field of a vex2-byte1 bit structure.
(vex2-byte1->l x) → l
Function:
(defun vex2-byte1->l$inline (x) (declare (xargs :guard (vex2-byte1-p x))) (mbe :logic (let ((x (vex2-byte1-fix x))) (part-select x :low 2 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 6) (ash (the (unsigned-byte 8) x) -2))))))
Theorem:
(defthm bitp-of-vex2-byte1->l (b* ((l (vex2-byte1->l$inline x))) (bitp l)) :rule-classes :rewrite)
Theorem:
(defthm vex2-byte1->l$inline-of-vex2-byte1-fix-x (equal (vex2-byte1->l$inline (vex2-byte1-fix x)) (vex2-byte1->l$inline x)))
Theorem:
(defthm vex2-byte1->l$inline-vex2-byte1-equiv-congruence-on-x (implies (vex2-byte1-equiv x x-equiv) (equal (vex2-byte1->l$inline x) (vex2-byte1->l$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm vex2-byte1->l-of-vex2-byte1 (equal (vex2-byte1->l (vex2-byte1 pp l vvvv r)) (bfix l)))
Theorem:
(defthm vex2-byte1->l-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x vex2-byte1-equiv-under-mask) (vex2-byte1-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 4) 0)) (equal (vex2-byte1->l x) (vex2-byte1->l y))))