Access the |X86ISA|::|PP| field of a vex2-byte1 bit structure.
(vex2-byte1->pp x) → pp
Function:
(defun vex2-byte1->pp$inline (x) (declare (xargs :guard (vex2-byte1-p x))) (mbe :logic (let ((x (vex2-byte1-fix x))) (part-select x :low 0 :width 2)) :exec (the (unsigned-byte 2) (logand (the (unsigned-byte 2) 3) (the (unsigned-byte 8) x)))))
Theorem:
(defthm 2bits-p-of-vex2-byte1->pp (b* ((pp (vex2-byte1->pp$inline x))) (2bits-p pp)) :rule-classes :rewrite)
Theorem:
(defthm vex2-byte1->pp$inline-of-vex2-byte1-fix-x (equal (vex2-byte1->pp$inline (vex2-byte1-fix x)) (vex2-byte1->pp$inline x)))
Theorem:
(defthm vex2-byte1->pp$inline-vex2-byte1-equiv-congruence-on-x (implies (vex2-byte1-equiv x x-equiv) (equal (vex2-byte1->pp$inline x) (vex2-byte1->pp$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm vex2-byte1->pp-of-vex2-byte1 (equal (vex2-byte1->pp (vex2-byte1 pp l vvvv r)) (2bits-fix pp)))
Theorem:
(defthm vex2-byte1->pp-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x vex2-byte1-equiv-under-mask) (vex2-byte1-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 3) 0)) (equal (vex2-byte1->pp x) (vex2-byte1->pp y))))