Access the |ACL2|::|R| field of a vex3-byte1 bit structure.
(vex3-byte1->r vex3byte1) → r
Function:
(defun vex3-byte1->r$inline (vex3byte1) (declare (xargs :guard (vex3-byte1-p vex3byte1))) (mbe :logic (let ((vex3byte1 (vex3-byte1-fix vex3byte1))) (part-select vex3byte1 :low 7 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 1) (ash (the (unsigned-byte 8) vex3byte1) -7))))))
Theorem:
(defthm bitp-of-vex3-byte1->r (b* ((r (vex3-byte1->r$inline vex3byte1))) (bitp r)) :rule-classes :rewrite)
Theorem:
(defthm vex3-byte1->r$inline-of-vex3-byte1-fix-vex3byte1 (equal (vex3-byte1->r$inline (vex3-byte1-fix vex3byte1)) (vex3-byte1->r$inline vex3byte1)))
Theorem:
(defthm vex3-byte1->r$inline-vex3-byte1-equiv-congruence-on-vex3byte1 (implies (vex3-byte1-equiv vex3byte1 vex3byte1-equiv) (equal (vex3-byte1->r$inline vex3byte1) (vex3-byte1->r$inline vex3byte1-equiv))) :rule-classes :congruence)
Theorem:
(defthm vex3-byte1->r-of-vex3-byte1 (equal (vex3-byte1->r (vex3-byte1 m-mmmm b x r)) (bfix r)))
Theorem:
(defthm vex3-byte1->r-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps vex3byte1 vex3-byte1-equiv-under-mask) (vex3-byte1-equiv-under-mask vex3byte1 y fty::mask) (equal (logand (lognot fty::mask) 128) 0)) (equal (vex3-byte1->r vex3byte1) (vex3-byte1->r y))))