Update the |X86ISA|::|UMIP| field of a cr4bits bit structure.
Function:
(defun !cr4bits->umip$inline (umip x) (declare (xargs :guard (and (bitp umip) (cr4bits-p x)))) (mbe :logic (b* ((umip (mbe :logic (bfix umip) :exec umip)) (x (cr4bits-fix x))) (part-install umip x :width 1 :low 11)) :exec (the (unsigned-byte 26) (logior (the (unsigned-byte 26) (logand (the (unsigned-byte 26) x) (the (signed-byte 13) -2049))) (the (unsigned-byte 12) (ash (the (unsigned-byte 1) umip) 11))))))
Theorem:
(defthm cr4bits-p-of-!cr4bits->umip (b* ((new-x (!cr4bits->umip$inline umip x))) (cr4bits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !cr4bits->umip$inline-of-bfix-umip (equal (!cr4bits->umip$inline (bfix umip) x) (!cr4bits->umip$inline umip x)))
Theorem:
(defthm !cr4bits->umip$inline-bit-equiv-congruence-on-umip (implies (bit-equiv umip umip-equiv) (equal (!cr4bits->umip$inline umip x) (!cr4bits->umip$inline umip-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !cr4bits->umip$inline-of-cr4bits-fix-x (equal (!cr4bits->umip$inline umip (cr4bits-fix x)) (!cr4bits->umip$inline umip x)))
Theorem:
(defthm !cr4bits->umip$inline-cr4bits-equiv-congruence-on-x (implies (cr4bits-equiv x x-equiv) (equal (!cr4bits->umip$inline umip x) (!cr4bits->umip$inline umip x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !cr4bits->umip-is-cr4bits (equal (!cr4bits->umip umip x) (change-cr4bits x :umip umip)))
Theorem:
(defthm cr4bits->umip-of-!cr4bits->umip (b* ((?new-x (!cr4bits->umip$inline umip x))) (equal (cr4bits->umip new-x) (bfix umip))))
Theorem:
(defthm !cr4bits->umip-equiv-under-mask (b* ((?new-x (!cr4bits->umip$inline umip x))) (cr4bits-equiv-under-mask new-x x -2049)))