Update the |X86ISA|::|DE| field of a fp-statusbits bit structure.
(!fp-statusbits->de de x) → new-x
Function:
(defun !fp-statusbits->de$inline (de x) (declare (xargs :guard (and (bitp de) (fp-statusbits-p x)))) (mbe :logic (b* ((de (mbe :logic (bfix de) :exec de)) (x (fp-statusbits-fix x))) (part-install de x :width 1 :low 1)) :exec (the (unsigned-byte 16) (logior (the (unsigned-byte 16) (logand (the (unsigned-byte 16) x) (the (signed-byte 3) -3))) (the (unsigned-byte 2) (ash (the (unsigned-byte 1) de) 1))))))
Theorem:
(defthm fp-statusbits-p-of-!fp-statusbits->de (b* ((new-x (!fp-statusbits->de$inline de x))) (fp-statusbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !fp-statusbits->de$inline-of-bfix-de (equal (!fp-statusbits->de$inline (bfix de) x) (!fp-statusbits->de$inline de x)))
Theorem:
(defthm !fp-statusbits->de$inline-bit-equiv-congruence-on-de (implies (bit-equiv de de-equiv) (equal (!fp-statusbits->de$inline de x) (!fp-statusbits->de$inline de-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !fp-statusbits->de$inline-of-fp-statusbits-fix-x (equal (!fp-statusbits->de$inline de (fp-statusbits-fix x)) (!fp-statusbits->de$inline de x)))
Theorem:
(defthm !fp-statusbits->de$inline-fp-statusbits-equiv-congruence-on-x (implies (fp-statusbits-equiv x x-equiv) (equal (!fp-statusbits->de$inline de x) (!fp-statusbits->de$inline de x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !fp-statusbits->de-is-fp-statusbits (equal (!fp-statusbits->de de x) (change-fp-statusbits x :de de)))
Theorem:
(defthm fp-statusbits->de-of-!fp-statusbits->de (b* ((?new-x (!fp-statusbits->de$inline de x))) (equal (fp-statusbits->de new-x) (bfix de))))
Theorem:
(defthm !fp-statusbits->de-equiv-under-mask (b* ((?new-x (!fp-statusbits->de$inline de x))) (fp-statusbits-equiv-under-mask new-x x -3)))