Update the |X86ISA|::|SCE| field of a ia32_eferbits bit structure.
(!ia32_eferbits->sce sce x) → new-x
Function:
(defun !ia32_eferbits->sce$inline (sce x) (declare (xargs :guard (and (bitp sce) (ia32_eferbits-p x)))) (mbe :logic (b* ((sce (mbe :logic (bfix sce) :exec sce)) (x (ia32_eferbits-fix x))) (part-install sce x :width 1 :low 0)) :exec (the (unsigned-byte 12) (logior (the (unsigned-byte 12) (logand (the (unsigned-byte 12) x) (the (signed-byte 2) -2))) (the (unsigned-byte 1) sce)))))
Theorem:
(defthm ia32_eferbits-p-of-!ia32_eferbits->sce (b* ((new-x (!ia32_eferbits->sce$inline sce x))) (ia32_eferbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !ia32_eferbits->sce$inline-of-bfix-sce (equal (!ia32_eferbits->sce$inline (bfix sce) x) (!ia32_eferbits->sce$inline sce x)))
Theorem:
(defthm !ia32_eferbits->sce$inline-bit-equiv-congruence-on-sce (implies (bit-equiv sce sce-equiv) (equal (!ia32_eferbits->sce$inline sce x) (!ia32_eferbits->sce$inline sce-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !ia32_eferbits->sce$inline-of-ia32_eferbits-fix-x (equal (!ia32_eferbits->sce$inline sce (ia32_eferbits-fix x)) (!ia32_eferbits->sce$inline sce x)))
Theorem:
(defthm !ia32_eferbits->sce$inline-ia32_eferbits-equiv-congruence-on-x (implies (ia32_eferbits-equiv x x-equiv) (equal (!ia32_eferbits->sce$inline sce x) (!ia32_eferbits->sce$inline sce x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !ia32_eferbits->sce-is-ia32_eferbits (equal (!ia32_eferbits->sce sce x) (change-ia32_eferbits x :sce sce)))
Theorem:
(defthm ia32_eferbits->sce-of-!ia32_eferbits->sce (b* ((?new-x (!ia32_eferbits->sce$inline sce x))) (equal (ia32_eferbits->sce new-x) (bfix sce))))
Theorem:
(defthm !ia32_eferbits->sce-equiv-under-mask (b* ((?new-x (!ia32_eferbits->sce$inline sce x))) (ia32_eferbits-equiv-under-mask new-x x -2)))