Update the |X86ISA|::|ZE| field of a mxcsrbits bit structure.
(!mxcsrbits->ze ze x) → new-x
Function:
(defun !mxcsrbits->ze$inline (ze x) (declare (xargs :guard (and (bitp ze) (mxcsrbits-p x)))) (mbe :logic (b* ((ze (mbe :logic (bfix ze) :exec ze)) (x (mxcsrbits-fix x))) (part-install ze x :width 1 :low 2)) :exec (the (unsigned-byte 32) (logior (the (unsigned-byte 32) (logand (the (unsigned-byte 32) x) (the (signed-byte 4) -5))) (the (unsigned-byte 3) (ash (the (unsigned-byte 1) ze) 2))))))
Theorem:
(defthm mxcsrbits-p-of-!mxcsrbits->ze (b* ((new-x (!mxcsrbits->ze$inline ze x))) (mxcsrbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !mxcsrbits->ze$inline-of-bfix-ze (equal (!mxcsrbits->ze$inline (bfix ze) x) (!mxcsrbits->ze$inline ze x)))
Theorem:
(defthm !mxcsrbits->ze$inline-bit-equiv-congruence-on-ze (implies (bit-equiv ze ze-equiv) (equal (!mxcsrbits->ze$inline ze x) (!mxcsrbits->ze$inline ze-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !mxcsrbits->ze$inline-of-mxcsrbits-fix-x (equal (!mxcsrbits->ze$inline ze (mxcsrbits-fix x)) (!mxcsrbits->ze$inline ze x)))
Theorem:
(defthm !mxcsrbits->ze$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (!mxcsrbits->ze$inline ze x) (!mxcsrbits->ze$inline ze x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !mxcsrbits->ze-is-mxcsrbits (equal (!mxcsrbits->ze ze x) (change-mxcsrbits x :ze ze)))
Theorem:
(defthm mxcsrbits->ze-of-!mxcsrbits->ze (b* ((?new-x (!mxcsrbits->ze$inline ze x))) (equal (mxcsrbits->ze new-x) (bfix ze))))
Theorem:
(defthm !mxcsrbits->ze-equiv-under-mask (b* ((?new-x (!mxcsrbits->ze$inline ze x))) (mxcsrbits-equiv-under-mask new-x x -5)))