Update the |X86ISA|::|DF| field of a rflagsbits bit structure.
(!rflagsbits->df df x) → new-x
Function:
(defun !rflagsbits->df$inline (df x) (declare (xargs :guard (and (bitp df) (rflagsbits-p x)))) (mbe :logic (b* ((df (mbe :logic (bfix df) :exec df)) (x (rflagsbits-fix x))) (part-install df x :width 1 :low 10)) :exec (the (unsigned-byte 32) (logior (the (unsigned-byte 32) (logand (the (unsigned-byte 32) x) (the (signed-byte 12) -1025))) (the (unsigned-byte 11) (ash (the (unsigned-byte 1) df) 10))))))
Theorem:
(defthm rflagsbits-p-of-!rflagsbits->df (b* ((new-x (!rflagsbits->df$inline df x))) (rflagsbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !rflagsbits->df$inline-of-bfix-df (equal (!rflagsbits->df$inline (bfix df) x) (!rflagsbits->df$inline df x)))
Theorem:
(defthm !rflagsbits->df$inline-bit-equiv-congruence-on-df (implies (bit-equiv df df-equiv) (equal (!rflagsbits->df$inline df x) (!rflagsbits->df$inline df-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !rflagsbits->df$inline-of-rflagsbits-fix-x (equal (!rflagsbits->df$inline df (rflagsbits-fix x)) (!rflagsbits->df$inline df x)))
Theorem:
(defthm !rflagsbits->df$inline-rflagsbits-equiv-congruence-on-x (implies (rflagsbits-equiv x x-equiv) (equal (!rflagsbits->df$inline df x) (!rflagsbits->df$inline df x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !rflagsbits->df-is-rflagsbits (equal (!rflagsbits->df df x) (change-rflagsbits x :df df)))
Theorem:
(defthm rflagsbits->df-of-!rflagsbits->df (b* ((?new-x (!rflagsbits->df$inline df x))) (equal (rflagsbits->df new-x) (bfix df))))
Theorem:
(defthm !rflagsbits->df-equiv-under-mask (b* ((?new-x (!rflagsbits->df$inline df x))) (rflagsbits-equiv-under-mask new-x x -1025)))