Update the |X86ISA|::|PP| field of a vex3-byte2 bit structure.
(!vex3-byte2->pp pp x) → new-x
Function:
(defun !vex3-byte2->pp$inline (pp x) (declare (xargs :guard (and (2bits-p pp) (vex3-byte2-p x)))) (mbe :logic (b* ((pp (mbe :logic (2bits-fix pp) :exec pp)) (x (vex3-byte2-fix x))) (part-install pp x :width 2 :low 0)) :exec (the (unsigned-byte 8) (logior (the (unsigned-byte 8) (logand (the (unsigned-byte 8) x) (the (signed-byte 3) -4))) (the (unsigned-byte 2) pp)))))
Theorem:
(defthm vex3-byte2-p-of-!vex3-byte2->pp (b* ((new-x (!vex3-byte2->pp$inline pp x))) (vex3-byte2-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !vex3-byte2->pp$inline-of-2bits-fix-pp (equal (!vex3-byte2->pp$inline (2bits-fix pp) x) (!vex3-byte2->pp$inline pp x)))
Theorem:
(defthm !vex3-byte2->pp$inline-2bits-equiv-congruence-on-pp (implies (2bits-equiv pp pp-equiv) (equal (!vex3-byte2->pp$inline pp x) (!vex3-byte2->pp$inline pp-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !vex3-byte2->pp$inline-of-vex3-byte2-fix-x (equal (!vex3-byte2->pp$inline pp (vex3-byte2-fix x)) (!vex3-byte2->pp$inline pp x)))
Theorem:
(defthm !vex3-byte2->pp$inline-vex3-byte2-equiv-congruence-on-x (implies (vex3-byte2-equiv x x-equiv) (equal (!vex3-byte2->pp$inline pp x) (!vex3-byte2->pp$inline pp x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !vex3-byte2->pp-is-vex3-byte2 (equal (!vex3-byte2->pp pp x) (change-vex3-byte2 x :pp pp)))
Theorem:
(defthm vex3-byte2->pp-of-!vex3-byte2->pp (b* ((?new-x (!vex3-byte2->pp$inline pp x))) (equal (vex3-byte2->pp new-x) (2bits-fix pp))))
Theorem:
(defthm !vex3-byte2->pp-equiv-under-mask (b* ((?new-x (!vex3-byte2->pp$inline pp x))) (vex3-byte2-equiv-under-mask new-x x -4)))