Basic equivalence relation for eoutcome structures.
Function:
(defun eoutcome-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (eoutcomep acl2::x) (eoutcomep acl2::y)))) (equal (eoutcome-fix acl2::x) (eoutcome-fix acl2::y)))
Theorem:
(defthm eoutcome-equiv-is-an-equivalence (and (booleanp (eoutcome-equiv x y)) (eoutcome-equiv x x) (implies (eoutcome-equiv x y) (eoutcome-equiv y x)) (implies (and (eoutcome-equiv x y) (eoutcome-equiv y z)) (eoutcome-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm eoutcome-equiv-implies-equal-eoutcome-fix-1 (implies (eoutcome-equiv acl2::x x-equiv) (equal (eoutcome-fix acl2::x) (eoutcome-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm eoutcome-fix-under-eoutcome-equiv (eoutcome-equiv (eoutcome-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-eoutcome-fix-1-forward-to-eoutcome-equiv (implies (equal (eoutcome-fix acl2::x) acl2::y) (eoutcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-eoutcome-fix-2-forward-to-eoutcome-equiv (implies (equal acl2::x (eoutcome-fix acl2::y)) (eoutcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm eoutcome-equiv-of-eoutcome-fix-1-forward (implies (eoutcome-equiv (eoutcome-fix acl2::x) acl2::y) (eoutcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm eoutcome-equiv-of-eoutcome-fix-2-forward (implies (eoutcome-equiv acl2::x (eoutcome-fix acl2::y)) (eoutcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)