Major Section: EVENTS
Examples: (defun-sk exists-x-p0-and-q0 (y z) (exists x (and (p0 x y z) (q0 x y z))))(defun-sk exists-x-p0-and-q0 (y z) ; equivalent to the above (exists (x) (and (p0 x y z) (q0 x y z))))
(defun-sk forall-x-y-p0-and-q0 (z) (forall (x y) (and (p0 x y z) (q0 x y z))))
defun-sk
fn
is the symbol you wish to define and is a new symbolic
name (see name), (var1 ... varn)
is its list of formal
parameters (see name), and body
is its body, which must be
quantified as described below. The &key
argument doc
is an optional
documentation string to be associated with fn
; for a description
of its form, see doc-string. In the case that n
is 1, the list
(var1)
may be replaced by simply var1
. The other arguments are
explained below.
For a simple example, see defun-sk-example. For a more elaborate example,
see Tutorial4-Defun-Sk-Example. Also see quantifiers for an example
illustrating how the use of recursion, rather than explicit quantification
with defun-sk
, may be preferable.
Below we describe the defun-sk
event precisely. First, let us
consider the examples above. The first example, again, is:
(defun-sk exists-x-p0-and-q0 (y z) (exists x (and (p0 x y z) (q0 x y z))))It is intended to represent the predicate with formal parameters
y
and z
that holds when for some x
, (and (p0 x y z) (q0 x y z))
holds. In fact defun-sk
is a macro that adds the following two
events
, as shown just below. The first axiom guarantees that if
this new predicate holds of y
and z
, then the term in question,
(exists-x-p0-and-q0-witness y z)
, is an example of the x
that is
therefore supposed to exist. (Intuitively, we are axiomatizing
exists-x-p0-and-q0-witness
to pick a witness if there is one.)
Conversely, the second event below guarantees that if there is any
x
for which the term in question holds, then the new predicate does
indeed holds of y
and z
.
(defun exists-x-p0-and-q0 (y z) (let ((x (exists-x-p0-and-q0-witness y z))) (and (p0 x y z) (q0 x y z)))) (defthm exists-x-p0-and-q0-suff (implies (and (p0 x y z) (q0 x y z)) (exists-x-p0-and-q0 y z)))Now let us look at the third example from the introduction above:
(defun-sk forall-x-y-p0-and-q0 (z) (forall (x y) (and (p0 x y z) (q0 x y z))))The intention is to introduce a new predicate
(forall-x-y-p0-and-q0 z)
which states that the indicated conjunction
holds of all x
and all y
together with the given z
. This time, the
axioms introduced are as shown below. The first event guarantees
that if the application of function forall-x-y-p0-and-q0-witness
to
z
picks out values x
and y
for which the given term
(and (p0 x y z) (q0 x y z))
holds, then the new predicate
forall-x-y-p0-and-q0
holds of z
. Conversely, the (contrapositive
of) the second axiom guarantees that if the new predicate holds of
z
, then the given term holds for all choices of x
and y
(and that
same z
).
(defun forall-x-y-p0-and-q0 (z) (mv-let (x y) (forall-x-y-p0-and-q0-witness z) (and (p0 x y z) (q0 x y z)))) (defthm forall-x-y-p0-and-q0-necc (implies (not (and (p0 x y z) (q0 x y z))) (not (forall-x-y-p0-and-q0 z))))The examples above suggest the critical property of
defun-sk
: it
indeed does introduce the quantified notions that it claims to
introduce.
We now turn to a detailed description defun-sk
, starting with a
discussion of its arguments as shown in the "General Form" above.
The third argument, body
, must be of the form
(Q bound-vars term)where:
Q
is the symbol forall
or exists
(in the "ACL2"
package), bound-vars
is a variable or true list of variables
disjoint from (var1 ... varn)
and not including state
, and
term
is a term. The case that bound-vars
is a single variable
v
is treated exactly the same as the case that bound-vars
is
(v)
.
The result of this event is to introduce a ``Skolem function,'' whose name is
the keyword argument skolem-name
if that is supplied, and otherwise is
the result of modifying fn
by suffixing "-WITNESS" to its name. The
following definition and one of the following two theorems (as indicated) are
introduced for skolem-name
and fn
in the case that bound-vars
(see above) is a single variable v
. The name of the defthm
event
may be supplied as the value of the keyword argument :thm-name
; if it is
not supplied, then it is the result of modifying fn
by suffixing
"-SUFF" to its name in the case that the quantifier is exists
, and
"-NECC" in the case that the quantifier is forall
.
(defun fn (var1 ... varn) (let ((v (skolem-name var1 ... varn))) term))In the case that(defthm fn-suff ;in case the quantifier is EXISTS (implies term (fn var1 ... varn)))
(defthm fn-necc ;in case the quantifier is FORALL (implies (not term) (not (fn var1 ... varn))))
bound-vars
is a list of at least two variables, say
(bv1 ... bvk)
, the definition above is the following instead, but
the theorem remains unchanged.
(defun fn (var1 ... varn) (mv-let (bv1 ... bvk) (skolem-name var1 ... varn) term))
In order to emphasize that the last element of the list body
is a
term, defun-sk
checks that the symbols forall
and exists
do
not appear anywhere in it. However, on rare occasions one might
deliberately choose to violate this convention, presumably because
forall
or exists
is being used as a variable or because a
macro call will be eliminating ``calls of'' forall
and exists
.
In these cases, the keyword argument quant-ok
may be supplied a
non-nil
value. Then defun-sk
will permit forall
and
exists
in the body, but it will still cause an error if there is
a real attempt to use these symbols as quantifiers.
Defun-sk
is a macro implemented using defchoose
, and hence should
only be executed in defun-mode :
logic
; see defun-mode and
see defchoose.
If you find that the rewrite rules introduced with a particular use of
defun-sk
are not ideal, then at least two reasonable courses of action
are available for you. Perhaps the best option is to prove the rewrite
rules you want. If you see a pattern for creating rewrite rules from your
defun-sk
events, you might want to write a macro that executes a
defun-sk
followed by one or more defthm
events. Another option is
to write your own variant of the defun-sk
macro, say, my-defun-sk
,
for example by modifying a copy of the definition of defun-sk
from the
ACL2 sources.
If you want to represent nested quantifiers, you can use multiple
defun-sk
events. For example, in order to represent
(forall x (exists y (p x y z)))you can use
defun-sk
twice, for example as follows.
(defun-sk exists-y-p (x z) (exists y (p x y z)))(defun-sk forall-x-exists-y-p (z) (forall x (exists-y-p x z)))
Some distracting and unimportant warnings are inhibited during
defun-sk
.
Note that this way of implementing quantifiers is not a new idea.
Hilbert was certainly aware of it 60 years ago! A paper by ACL2
authors Kaufmann and Moore, entitled ``Structured Theory Development
for a Mechanized Logic'' (Journal of Automated Reasoning 26, no. 2 (2001),
pp. 161-203) explains why our use of defchoose
is appropriate, even in
the presence of epsilon-0
induction.