Major Section: RULE-CLASSES
See rule-classes for a general discussion of rule classes and how they are used to build rules from formulas.
Example Rule Class: (:type-set-inverter :corollary (equal (and (counting-number x) (not (equal x 0))) (and (integerp x) (< x 0))) :type-set 2) General Forms of Rule Class: :type-set-inverter, or (:type-set-inverter :type-set n) General Form of Theorem or Corollary: (EQUAL new-expr old-expr)where
n
is a type-set
(see type-set) and old-expr
is the term
containing x
as a free variable that ACL2 currently uses to
recognize type-set
n
. For a given n
, the exact form of old-expr
is
generated by
(convert-type-set-to-term 'x n (ens state) (w state) nil)].
If the :
type-set
field of the rule-class is omitted, we attempt to
compute it from the right-hand side, old-expr
, of the corollary.
That computation is done by type-set-implied-by-term
(see type-set). However, it is possible that the type-set we
compute from lhs
does not have the required property that when
inverted with convert-type-set-to-term
the result is lhs
. If you
omit :
type-set
and an error is caused because lhs
has the incorrect
form, you should manually specify both :
type-set
and the lhs
generated by convert-type-set-to-term
.
The rule generated will henceforth make new-expr
be the term used by
ACL2 to recognize type-set n
. If this rule is created by a defthm
event named name
then the rune of the rule is
(:type-set-inverter name)
and by disabling that rune you can
prevent its being used to decode type-sets.
Type-sets are inverted when forced assumptions are turned into
formulas to be proved. In their internal form, assumptions are
essentially pairs consisting of a context and a goal term, which was
forced. Abstractly a context is just a list of hypotheses which may
be assumed while proving the goal term. But actually contexts are
alists which pair terms with type-sets, encoding the current
hypotheses. For example, if the original conjecture contained the
hypothesis (integerp x)
then the context used while working on that
conjecture will include the assignment to x
of the type-set
*ts-integer*
.