Contents
Page-10
Prev
Next
Page+10
Index
Equivalent Formula Laws
- Implication:
F → G = ¬ F ∨ G
F ↔ G = (F → G) ∧ (G → F)
A ∧ B ∧ C → D = ¬ A ∨ ¬ B ∨ ¬ C ∨ D
- De Morgan's Laws:
¬ (F ∨ G) = ¬ F ∧ ¬ G
¬ (F ∧ G) = ¬ F ∨ ¬ G
- Distributive:
F ∨ (G ∧ H) = (F ∨ G) ∧ (F ∨ H)
F ∧ (G ∨ H) = (F ∧ G) ∨ (F ∧ H)
Inference Rules
- Modus Ponens: P, P → QQ
or P, P → Q ⊢ Q