; Representation: formula is (op lhs rhs) (defun op (form) (car form)) ; operator (defun lhs (form) (cadr form)) ; left-hand side (defun rhs (form) (caddr form)) ; right-hand side ; Derivative of FORM with respect to VAR ; Example: (deriv '(* 5 x) 'x) (defun deriv (form var) (cond ((atom form) (if (eq form var) 1 0)) ((eq (op form) '+) (deriv+ form var)) ((eq (op form) '*) (deriv* form var)) (t (error "No deriv fn for ~S" form))) ) ; Derivative of a sum, e.g. (+ u v) ; d/dx(u + v) = d/dx(u) + d/dx(v) (defun deriv+ (form var) (s+ (deriv (lhs form) var) (deriv (rhs form) var)) ) ; Symbolic + (trivial version) (defun s+ (x y) (list '+ x y))
Contents    Page-10    Prev    Next    Page+10    Index