CS391R: Robot Learning
Perception and Decision Making: Architectures, Algorithms, and Applications
Course Description
Robots and autonomous systems have been playing a significant role in the modern economy. Custom-built robots have remarkably improved productivity, operational safety, and product quality. However, these robots are usually programmed for specific tasks in well-controlled environments, unable to perform diverse tasks in the real world. How can we take robots out of constrained environments to our daily life, to assist us in a variety of real-world tasks as our companion and assistant? It demands a new form of general-purpose robot autonomy that robots understand the world through the lens of its perception and make informed decisions accordingly. This course studies modern machine learning and AI algorithms for autonomous robots as an embodied intelligent agent. It covers advanced topics that center around the principles and techniques on 1) how robots perceive the unstructured environments from raw sensory data, 2) how robots make decisions based upon its perception, and 3) how robots learn and adapt actively and continually in the physical world.
Course Time and Location
Time: Tue/Thu 3:30 to 5pmLocation: GDC 1.304
Online Platforms
PiazzaCanvas
Gradescope
Zoom