Subsection 1.6.2 Summary
ΒΆIf \(\alpha, \beta \in \mathbb C \) with \(\alpha = \alpha_r + \alpha_c i \) and \(\beta = \beta_r + i \beta_c \text{,}\) where \(\alpha_r, \alpha_c, \beta_r, \beta_c \in \mathbb R \text{,}\) then
Conjugate: \(\overline \alpha = \alpha_r - \alpha_c i \text{.}\)
Product: \(\alpha \beta = (\alpha_r \beta_r - \alpha_c \beta_c ) + ( \alpha_r \beta_c + \alpha_c \beta_r ) i \text{.}\)
Absolute value: \(\vert \alpha \vert = \sqrt{ \alpha_r^2 + \alpha_c^2 } = \sqrt{ \overline \alpha \alpha } \text{.}\)
Let \(x, y \in \Cm \) with \(x = \left( \begin{array}{c} \chi_0 \\ \vdots \\ \chi_{m-1} \end{array} \right) \mbox{ and } y = \left( \begin{array}{c} \psi_0 \\ \vdots \\ \psi_{m-1} \end{array} \right). \) Then
-
Conjugate:
\begin{equation*} \overline x = \left( \begin{array}{c} \overline \chi_0 \\ \vdots \\ \overline \chi_{m-1} \end{array} \right). \end{equation*} -
Transpose of vector:
\begin{equation*} x^T = \left( \begin{array}{c c c} \chi_0 \amp \cdots \amp \chi_{m-1} \end{array} \right) \end{equation*} -
Hermitian transpose (conjugate transpose) of vector:
\begin{equation*} x^H = \overline x^T = \overline {x^T} = \left( \begin{array}{c c c} \overline \chi_0 \amp \cdots \amp \overline \chi_{m-1} \end{array} \right). \end{equation*} Dot product (inner product): \(x^H y = \overline x^T y = \overline {x^T} y = \overline \chi_0 \psi_0 + \cdots + \overline \chi_{m-1} \psi_{m-1} = \sum_{i=0}^{m-1} \overline \chi_i \psi_i \text{.}\)
Let \(\| \cdot \|: \Cm \rightarrow \mathbb R \text{.}\) Then \(\|
\cdot \|\) is a (vector) norm if for all \(x, y \in \Cm \) and all \(\alpha \in
\mathbb C \)
Definition 1.6.2.1. Vector norm.
2-norm (Euclidean length): \(\| x \|_2 = \sqrt{ x^H x } = \sqrt{ \vert \chi_0 \vert^2 + \cdots + \vert \chi_{m-1} \vert^2 } = \sqrt{ \overline \chi_0 \chi_0 + \cdots + \overline \chi_{m-1} \chi_{m-1} } \) \(= \sqrt{ \sum_{i=0}^{m-1} \vert \chi_i \vert^2 } \text{.}\)
\(p \)-norm: \(\| x \|_p = \sqrt[p]{ \vert \chi_0 \vert^p + \cdots + \vert \chi_{m-1} \vert^p } = \sqrt[p]{\sum_{i=0}^{m-1} \vert \chi_i \vert^p } \text{.}\)
1-norm: \(\| x \|_1 = \vert \chi_0 \vert + \cdots + \vert \chi_{m-1} \vert = \sum_{i=0}^{m-1} \vert \chi_i \vert \text{.}\)
\(\infty \)-norm: \(\| x \|_\infty = \max( \vert \chi_0 \vert, \ldots , \chi_{m-1} \vert ) = \max_{i=0}^{m-1} \vert \chi_i \vert = \lim_{p \rightarrow \infty} \| x \|_p \text{.}\)
Unit ball: Set of all vectors with norm equal to one. Notation: \(\| x \| = 1. \)
Theorem 1.6.2.2. Equivalence of vector norms.
Let \(\| \cdot \|: \C^m \rightarrow \mathbb R \) and \(\vert \vert \vert \cdot \vert \vert \vert: \C^m \rightarrow \mathbb R \) both be vector norms. Then there exist positive scalars \(\sigma \) and \(\tau \) such that for all \(x \in \Cm \)
Definition 1.6.2.3. Linear transformations and matrices.
Let \(L : \Cn \rightarrow \Cm \text{.}\) Then \(L \) is said to be a linear transformation if for all \(\alpha \in \mathbb C \) and \(x, y \in \Cn \)
\(L( \alpha x ) = \alpha L( x ) \text{.}\) That is, scaling first and then transforming yields the same result as transforming first and then scaling.
\(L( x + y ) = L( x ) + L( y ) \text{.}\) That is, adding first and then transforming yields the same result as transforming first and then adding.
Definition 1.6.2.4. Standard basis vector.
In this course, we will use \(e_j \in \Cm \) to denote the standard basis vector with a "1" in the position indexed with \(j \text{.}\) So,
If \(L \) is a linear transformation and we let \(a_j = L( e_j ) \) then
is the matrix that represents \(L \) in the sense that \(A x = L( x ) \text{.}\)
Partition \(C \text{,}\) \(A \text{,}\) and \(B \) by rows and columns
and
then \(C := A B \) can be computed in the following ways:
-
By columns:
\begin{equation*} \left( \begin{array}{c | c | c} c_0 \amp \cdots \amp c_{n-1} \end{array} \right) := A \left( \begin{array}{c | c | c} b_0 \amp \cdots \amp b_{n-1} \end{array} \right) = \left( \begin{array}{c | c | c} A b_0 \amp \cdots \amp A b_{n-1} \end{array} \right). \end{equation*}In other words, \(c_j := A b_j \) for all columns of \(C \text{.}\)
-
By rows:
\begin{equation*} \left( \begin{array}{c} \widetilde c_0^T \\ \hline \vdots \\ \hline \widetilde c_{m-1}^T \end{array} \right) := \left( \begin{array}{c} \widetilde a_0^T \\ \hline \vdots \\ \hline \widetilde a_{m-1}^T \end{array} \right) B = \left( \begin{array}{c} \widetilde a_0^T B \\ \hline \vdots \\ \hline \widetilde a_{m-1}^T B \end{array} \right). \end{equation*}In other words, \(\widetilde c_i^T = \widetilde a_i^T B\) for all rows of \(C \text{.}\)
-
As the sum of outer products:
\begin{equation*} C := \left( \begin{array}{c | c | c} a_0 \amp \cdots \amp a_{k-1} \end{array} \right) \left( \begin{array}{c} \widetilde b_0^T \\ \hline \vdots \\ \hline \widetilde b_{k-1}^T \end{array} \right) = a_0 \widetilde b_0^T + \cdots + a_{k-1} \widetilde b_{k-1} ^T, \end{equation*}which should be thought of as a sequence of rank-1 updates, since each term is an outer product and an outer product has rank of at most one.
Partition \(C \text{,}\) \(A \text{,}\) and \(B \) by blocks (submatrices),
and
where the partitionings are "conformal." Then
Definition 1.6.2.5. Matrix norm.
Let \(\| \cdot \|: \mathbb C^{m \times n} \rightarrow \mathbb R \text{.}\) Then \(\| \cdot \| \) is a (matrix) norm if for all \(A, B \in \mathbb C^{m \times n} \) and all \(\alpha \in \mathbb C \)
- \(A \neq 0 \Rightarrow \| A \| > 0 \) (\(\| \cdot \| \) is positive definite),
- \(\| \alpha A \| = \vert \alpha \vert \| A \|\) (\(\| \cdot \| \) is homogeneous), and
- \(\| A + B \| \leq \| A \| + \| B \| \) (\(\| \cdot \| \) obeys the triangle inequality).
Let \(A \in \mathbb C^{m \times n} \) and
Then
-
Conjugate of matrix:
\begin{equation*} \overline A = \left( \begin{array}{cc c } \overline \alpha_{0,0} \amp \cdots \amp \overline \alpha_{0,n-1} \\ \vdots \amp \vdots \\ \overline \alpha_{m-1,0} \amp \cdots \amp \overline \alpha_{m-1,n-1} \end{array} \right). \end{equation*} -
Transpose of matrix:
\begin{equation*} A^T = \left( \begin{array}{c c c} \alpha_{0,0} \amp \cdots \amp \alpha_{m-1,0} \\ \vdots \amp \vdots \\ \alpha_{0,n-1} \amp \cdots \amp \alpha_{m-1,n-1} \\ \end{array} \right). \end{equation*} -
Conjugate transpose (Hermitian transpose) of matrix:
\begin{equation*} A^H = \overline A^T = {\overline A^T} = \left( \begin{array}{c c c} \overline \alpha_{0,0} \amp \cdots \amp \overline \alpha_{m-1,0} \\ \vdots \amp \vdots \\ \overline \alpha_{0,n-1} \amp \cdots \amp \overline \alpha_{m-1,n-1} \\ \end{array} \right). \end{equation*} Frobenius norm: \(\| A \|_F = \sqrt{\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \vert \alpha_{i,j} \vert^2} = \sqrt{ \sum_{j=0}^{n-1} \| a_j \|_2^2 } = \sqrt{ \sum_{i=0}^{m-1} \| \widetilde a_i \|_2^2 } \)
matrix p-norm: \(\| A \|_p = \max_{x \neq 0} \frac{\| A x \|_p}{\| x \|_p} = \max_{\| x \|_p =1} \| A x \|_p .\)
matrix 2-norm: \(\| A \|_2 = \max_{x \neq 0} \frac{\| A x \|_2}{\| x \|_2} = \max_{\| x \|_2 =1} \| A x \|_2 = \| A^H \|_2.\)
matrix 1-norm: \(\| A \|_1 = \max_{x \neq 0} \frac{\| A x \|_1}{\| x \|_1} = \max_{\| x \|_1 =1} \| A x \|_1 = \max_{0 \leq j \lt n} \| a_j \|_1 = \| A^H \|_\infty. \)
matrix \(\infty \)-norm: \(\| A \|_\infty = \max_{x \neq 0} \frac{\| A x \|_\infty}{\| x \|_\infty} = \max_{\| x \|_\infty =1} \| A x \|_\infty = \max_{0 \leq i \lt m} \| \widetilde a_i \|_1 = \| A^H \|_1.\)
Theorem 1.6.2.6. Equivalence of matrix norms.
Let \(\| \cdot \|: \C^{m \times n} \rightarrow \mathbb R \) and \(\vert \vert \vert \cdot \vert \vert \vert: \C^{m \times n} \rightarrow \mathbb R \) both be matrix norms. Then there exist positive scalars \(\sigma \) and \(\tau \) such that for all \(A \in \C^{m \times n} \)
Definition 1.6.2.7. Subordinate matrix norm.
A matrix norm \(\| \cdot \|: \C^{m \times n} \rightarrow \mathbb R \) is said to be subordinate to vector norms \(\| \cdot \|_\mu: \Cm \rightarrow \mathbb R \) and \(\| \cdot \|_\nu: \Cn \rightarrow \mathbb R \) if, for all \(x \in \Cn \text{,}\)
If \(\| \cdot \|_\mu \) and \(\| \cdot \|_\nu \) are the same norm (but perhaps for different \(m \) and \(n \)), then \(\| \cdot \| \) is said to be subordinate to the given vector norm.
Definition 1.6.2.8. Consistent matrix norm.
A matrix norm \(\| \cdot \|: \C^{m \times n} \rightarrow \mathbb R \) is said to be a consistent matrix norm if it is defined for all \(m \) and \(n \text{,}\) using the same formula for all \(m \) and \(n \text{.}\)
Definition 1.6.2.9. Submultiplicative matrix norm.
A consistent matrix norm \(\| \cdot \|: \C^{m \times n} \rightarrow \mathbb R \) is said to be submultiplicative if it satisfies
Let \(A, \Delta\!A \in \mathbb C^{m \times m} \text{,}\) \(x, \delta\!x, b, \delta\!b \in \Cm \text{,}\) \(A \) be nonsingular, and \(\| \cdot \| \) be a vector norm and corresponding subordinate matrix norm. Then
Definition 1.6.2.10. Condition number of a nonsingular matrix.
The value \(\kappa( A ) = \| A \| \| A^{-1} \| \) is called the condition number of a nonsingular matrix \(A \text{.}\)