Subsection 2.1.2 Overview
ΒΆ-
2.1 Opening Remarks
2.1.1 Low rank approximation
2.1.2 Overview
2.1.3 What you will learn
-
2.2 Orthogonal Vectors and Matrices
2.2.1 Orthogonal vectors
2.2.2 Component in the direction of a vector
2.2.3 Orthonormal vectors and matrices
2.2.4 Unitary matrices
2.2.5 Examples of unitary matrices
2.2.6 Change of orthonormal basis
2.2.7 Why we love unitary matrices choice
-
2.3 The Singular Value Decomposition
2.3.1 The Singular Value Decomposition Theorem
2.3.2 Geometric interpretation
2.3.3 An "algorithm" for computing the SVD
2.3.4 The Reduced Singular Value Decomposition
2.3.5 The SVD of nonsingular matrices
2.3.6 Best rank-k approximation
-
2.4 Enrichments
2.4.1 Principle Component Analysis (PCA)
-
2.5 Wrap Up
2.5.1 Additional homework
2.5.2 Summary