Subsection 2.5.2 Summary
ΒΆGiven \(x, y \in \Cm \)
-
their dot product (inner product) is defined as
\begin{equation*} x^H y = \overline x^T y = \overline{x^T} y = \overline \chi_0 \psi_0 + \overline \chi_1 \psi_1 + \cdots + \overline \chi_{m-1} \psi_{m-1} = \sum_{i=0}^{m-1} \overline \chi_i \psi_i . \end{equation*} These vectors are said to be orthogonal (perpendicular) iff \(x^H y = 0 \text{.}\)
-
The component of \(y \) in the direction of \(x \) is given by
\begin{equation*} \frac{x^H y}{x^H x} x = \frac{x x^H }{x^H x} y. \end{equation*}The matrix that projects a vector onto the space spanned by \(x \) is given by
\begin{equation*} \frac{x x^H } {x^H x}. \end{equation*} -
The component of \(y \) orthogonal to \(x \) is given by
\begin{equation*} y - \frac{x^H y}{x^H x} x = \left( I - \frac{x x^H }{x^H x}\right) y. \end{equation*}Thus, the matrix that projects a vector onto the space orthogonal to \(x \) is given by
\begin{equation*} I - \frac{x x^H } {x^H x}. \end{equation*}
Given \(u,v \in \Cm \) with \(u \) of unit length
-
The component of \(v \) in the direction of \(u \) is given by
\begin{equation*} u^H v u = u u^H v. \end{equation*} -
The matrix that projects a vector onto the space spanned by \(u \) is given by
\begin{equation*} u u^H \end{equation*} -
The component of \(v \) orthogonal to \(u \) is given by
\begin{equation*} v - u^H v u = \left( I - u u^H \right) v. \end{equation*} -
The matrix that projects a vector onto the space that is orthogonal to \(x \) is given by
\begin{equation*} I - u u^H \end{equation*}
Let \(u_0, u_1, \ldots, u_{n-1} \in \C^m \text{.}\) These vectors are said to be mutually orthonormal if for all \(0 \leq i,j \lt n \)
Let \(Q \in \C^{m \times n} \) (with \(n \leq m \)). Then \(Q \) is said to be
an orthonormal matrix iff \(Q^H Q = I \text{.}\)
a unitary matrix iff \(Q^H Q = I \) and \(m = n \text{..}\)
an orthogonal matrix iff it is a unitary matrix and is real-valued.
Let \(Q \in \C^{m \times n} \) (with \(n \leq m \)). Then \(Q = \left( \begin{array}{c | c | c} q_0 \amp \cdots q_{n-1} \end{array} \right) \) is orthonormal iff \(\{ q_0, \ldots, q_{n-1} \) are mutually orthonormal.
Definition 2.5.2.1. Unitary matrix.
Let \(U \in \C^{m \times m} \text{.}\) Then \(U \) is said to be a unitary matrix if and only if \(U^H U = I \) (the identity).
If \(U, V \in \C^{m \times m} \) are unitary, then
\(U^H U = I \text{.}\)
\(U U^H = I \text{.}\)
\(U^{-1} = U^H \text{.}\)
\(U^H \) is unitary.
\(U V \) is unitary.
If \(U \in \Cmxm \) and \(V \in \C^{n \times n} \) are unitary, \(x \in \Cm \text{,}\) and \(A \in \Cmxn \text{,}\) then
\(\| U x \|_2 = \| x \|_2 \text{.}\)
\(\| U^H A \|_2 = \| U A \|_2 = \| A V \|_2 = \| A V^H \|_2 = \| U^H A V \|_2 = \| U A V^H \|_2 = \| A \|_2 \text{.}\)
\(\| U^H A \|_F = \| U A \|_F = \| A V \|_F = \| A V^H \|_F = \| U^H A V \|_F = \| U A V^H \|_F = \| A \|_F \text{.}\)
\(\| U\|_2 = 1 \)
\(\kappa_2( U ) = 1 \)
Examples of unitary matrices:
Rotation in 2D: \(\left( \begin{array}{r r} c \amp -s \\ s \amp c \end{array} \right) \text{.}\)
Reflection: \(I - 2 u u^H \) where \(u \in \Cm\) and \(\| u \|_2 = 1 \text{.}\)
Change of orthonormal basis: If \(x \in \Cm \) and \(U = \left( \begin{array}{c | c | c} u_0 \amp \cdots \amp u_{m-1} \end{array} \right) \) is unitary, then
Let \(A \in \Cnxn \) be nonsingular and \(x \in \Cn \) a nonzero vector. Consider
Then
where \(\| \cdot \| \) is an induced matrix norm.
Theorem 2.5.2.2. Singular Value Decomposition Theorem.
Given \(A \in \C^{m \times n} \) there exist unitary \(U \in \C^{ m \times m} \text{,}\) unitary \(V \in \C^{n \times n} \text{,}\) and \(\Sigma \in \Rmxn \) such that \(A = U \Sigma V^H \text{.}\) Here \(\Sigma = \FlaTwoByTwo{ \Sigma_{TL} }{ 0 }{ 0 }{ 0 } \) with
The values \(\sigma_0, \ldots, \sigma_{r-1} \) are called the singular values of matrix \(A \text{.}\) The columns of \(U \) and \(V \) are called the left and right singular vectors, respectively.
Let \(A \in \C^{m \times n} \) and \(A = U \Sigma V^H \) its SVD with
and
Here \(U_L \in \C^{m \times r} \text{,}\) \(V_L \in \C^{n \times r} \) and \(\Sigma_{TL} \in \R^{r \times r } \text{.}\) Then
\(\| A \|_2 = \sigma_0 \text{.}\) (The 2-norm of a matrix equals the largest singular value.)
\(\rank( A ) = r \text{.}\)
\(\Col( A ) = \Col( U_L ) \text{.}\)
\(\Null( A ) = \Col( V_R ) \text{.}\)
\(\Rowspace( A ) = \Col( V_L ) \text{.}\)
Left null-space of \(A = \Col( U_R ) \text{.}\)
\(A^H = V \Sigma^T U^H \text{.}\)
SVD: \(A^H = V \Sigma U^H \text{.}\)
Reduced SVD: \(A = U_L \Sigma_{TL} V_L^H \text{.}\)
- \begin{equation*} A = \begin{array}[t]{c} \underbrace{ ~~~~~~~~~\sigma_0 u_0 v_0^H ~~~~~~~~~ } \\ \sigma_0 \!\!\!\! \begin{array}[t]{c|c} ~\amp~\\ ~\amp~\\ \end{array} \!\!\!\! \begin{array}[t]{c}\hline ~~~~~~~~~ \\ ~ \end{array} \end{array} + \begin{array}[t]{c} \underbrace{ ~~~~~~~~~\sigma_1 u_1 v_1^H ~~~~~~~~~ } \\ \sigma_1 \!\!\!\! \begin{array}[t]{c|c} ~\amp~\\ ~\amp~\\ \end{array} \!\!\!\! \begin{array}[t]{c} \hline ~~~~~~~~~ \\ ~ \end{array} \end{array} + \cdots + \begin{array}[t]{c} \underbrace{ ~~~~~~~~~\sigma_{r-1} u_{r-1} v_{r-1}^H ~~~~~~~~~ } \\ \sigma_{r-1} \!\!\!\! \begin{array}[t]{c|c} ~\amp~\\ ~\amp~\\ \end{array} \!\!\!\! \begin{array}[t]{c} \hline ~~~~~~~~~ \\ ~ \end{array} \end{array} . \end{equation*}
Reduced SVD: \(A^H = V_L \Sigma U_L^H \text{.}\)
If \(m \times m \) matrix \(A \) is nonsingular: \(A^{-1} = V \Sigma^{-1} U^H \text{.}\)
If \(A \in \Cmxm \) then \(A \) is nonsingular if and only if \(\sigma_{m-1} \neq 0 \text{.}\)
If \(A \in \Cmxm \) is nonsingular then \(\kappa_2( A ) = \sigma_0 / \sigma_{m-1} \text{.}\)
(Left) pseudo inverse: if \(A \) has linearly independent columns, then \(A^\dagger = ( A^H A )^{-1} A^H = V \Sigma_{TL}^{-1} U_L^H \text{.}\)
\(v_0 \) is the direction of maximal magnification.
\(v_{n-1} \) is is the direction of minimal magnification.
If \(n \leq m \text{,}\) then \(A v_j = \sigma_j u_j \text{,}\) for \(0 \leq j \lt n \text{.}\)
Theorem 2.5.2.3.
Given \(A \in \C^{m \times n}\text{,}\) let \(A = U \Sigma V^H \) be its SVD. Assume the entries on the main diagonal of \(\Sigma \) are \(\sigma_0 , \cdots , \sigma_{\min(m,n)-1} \) with \(\sigma_0 \geq \cdots \geq \sigma_{\min(m,n)-1} \geq 0 \text{.}\) Given \(k \) such that \(0 \leq k \leq min( m,n ) \text{,}\) partition
where \(U_L \in \C^{m \times k} \text{,}\) \(V_L \in \C^{n \times k} \text{,}\) and \(\Sigma_{TL} \in \R^{k \times k} \text{.}\) Then
is the matrix in \(\C^{m \times n} \) closest to \(A \) in the following sense:
In other words, \(B \) is the matrix with rank at most \(k \) that is closest to \(A \) as measured by the 2-norm. Also, for this \(B \text{,}\)