Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Skip to main content

Subsection 2.3.2 Geometric interpretation

fit width

We will now illustrate what the SVD Theorem tells us about matrix-vector multiplication (linear transformations) by examining the case where A∈R2Γ—2. Let A=UΞ£VT be its SVD. (Notice that all matrices are now real valued, and hence VH=VT.) Partition

A=(u0u1)(Οƒ000Οƒ1)(v0v1)T.

Since U and V are unitary matrices, {u0,u1} and {v0,v1} form orthonormal bases for the range and domain of A, respectively:

R2: Domain of A:

R2: Range (codomain) of A:

Let us manipulate the decomposition a little:

A=(u0u1)(Οƒ000Οƒ1)(v0v1)T=[(u0u1)(Οƒ000Οƒ1)](v0v1)T=(Οƒ0u0Οƒ1u1)(v0v1)T.

Now let us look at how A transforms v0 and v1:

Av0=(Οƒ0u0Οƒ1u1)(v0v1)Tv0=(Οƒ0u0Οƒ1u1)(10)=Οƒ0u0

and similarly Av1=Οƒ1u1. This motivates the pictures in Figure 2.3.2.1.

R2: Domain of A:

R2: Range (codomain) of A:

R2: Domain of A:

R2: Range (codomain) of A:

Figure 2.3.2.1. Illustration of how orthonormal vectors v0 and v1 are transformed by matrix A=UΞ£V.

Next, let us look at how A transforms any vector with (Euclidean) unit length. Notice that x=(Ο‡0Ο‡1) means that

x=Ο‡0e0+Ο‡1e1,

where e0 and e1 are the unit basis vectors. Thus, Ο‡0 and Ο‡1 are the coefficients when x is expressed using e0 and e1 as basis. However, we can also express x in the basis given by v0 and v1:

x=VVT⏟Ix=(v0v1)(v0v1)Tx=(v0v1)(vT0xvT1x)=vT0x⏟α0v0+vT1x⏟α1v1=α0v0+α1v1=(v0v1)(α0α1).

Thus, in the basis formed by v0 and v1, its coefficients are Ξ±0 and Ξ±1. Now,

Ax=(Οƒ0u0Οƒ1u1)(v0v1)Tx=(Οƒ0u0Οƒ1u1)(v0v1)T(v0v1)(Ξ±0Ξ±1)=(Οƒ0u0Οƒ1u1)(Ξ±0Ξ±1)=Ξ±0Οƒ0u0+Ξ±1Οƒ1u1.

This is illustrated by the following picture, which also captures the fact that the unit ball is mapped to an oval with major axis equal to Οƒ0=β€– and minor axis equal to \sigma_1 \text{,} as illustrated in Figure 2.3.2.1 (bottom).

Finally, we show the same insights for general vector x (not necessarily of unit length):

\R^{2} \text{:} Domain of A \text{:}

\R^{2} \text{:} Range (codomain) of A \text{:}

Another observation is that if one picks the right basis for the domain and codomain, then the computation A x simplifies to a matrix multiplication with a diagonal matrix. Let us again illustrate this for nonsingular A \in \R^{2 \times 2} with

\begin{equation*} A = \begin{array}[t]{c} \underbrace{ \left( \begin{array}{c | c} u_0 \amp u_1 \end{array} \right) } \\ U \end{array} \begin{array}[t]{c} \underbrace{ \left( \begin{array}{c | c} \sigma_0 \amp 0 \\ \hline 0 \amp \sigma_1 \end{array} \right) } \\ \Sigma \end{array} \begin{array}[t]{c} \underbrace{ \left( \begin{array}{c | c} v_0 \amp v_1 \end{array} \right) } \\ V \end{array} ^T. \end{equation*}

Now, if we chose to express y using u_0 and u_1 as the basis and express x using v_0 and v_1 as the basis, then

\begin{equation*} \begin{array}{rcl} \begin{array}[t]{c} \underbrace{U U^T} \\ I \end{array} y \amp=\amp U \begin{array}[t]{c} \underbrace{U^T y} \\ \widehat y \end{array} = ( u_0^T y ) u_0 + ( u_1^T y ) u_1 \\ \amp=\amp \left(\begin{array}{c | c} u_0 \amp u_1 \end{array} \right) \left( \begin{array}{c} u_0^T y \\ \hline u_1^T y \end{array}\right) = U \begin{array}[t]{c} \underbrace{ \left( \begin{array}{c} \widehat \psi_0 \\ \hline \widehat \psi_1 \end{array} \right)}\\ \widehat y \end{array} \\ \begin{array}[t]{c} \underbrace{V V^T} \\ I \end{array} x \amp=\amp V \begin{array}[t]{c} \underbrace{V^T x} \\ \widehat x \end{array} = ( v_0^T x ) v_0 + ( v_1^T x ) v_1 \\ \amp=\amp \left(\begin{array}{c | c} v_0 \amp v_1 \end{array} \right) \left( \begin{array}{c} v_0^T x \\ \hline v_1^T x \end{array}\right) = V \begin{array}[t]{c} \underbrace{ \left( \begin{array}{c} \widehat \chi_0 \\ \hline \widehat \chi_1. \end{array} \right)} \\ \widehat x \end{array}. \end{array} \end{equation*}

If y = A x then

\begin{equation*} U \begin{array}[t]{c} \underbrace{ U^T y } \\ \widehat y \end{array} = \begin{array}[t]{c} \underbrace{ U \Sigma V^T x } \\ A x \end{array} = U \Sigma \widehat x \end{equation*}

so that

\begin{equation*} \widehat y = \Sigma \widehat x \end{equation*}

and

\begin{equation*} \left( \begin{array}{c} \widehat \psi_0 \\ \hline \widehat \psi_1. \end{array} \right) = \left( \begin{array}{c} \sigma_0 \widehat \chi_0 \\ \hline \sigma_1 \widehat \chi_1. \end{array} \right). \end{equation*}
Remark 2.3.2.2.

The above discussion shows that if one transforms the input vector x and output vector y into the right bases, then the computation y := A x can be computed with a diagonal matrix instead: \widehat y := \Sigma \widehat x \text{.} Also, solving A x = y for x can be computed by multiplying with the inverse of the diagonal matrix: \widehat x := \Sigma^{-1} \widehat y \text{.}

These observations generalize to A \in \C^{m \times n}\text{:} If

\begin{equation*} y = A x \end{equation*}

then

\begin{equation*} U^H y = U^H A \begin{array}[t]{c} \underbrace{V V^H }\\ I \end{array} x \end{equation*}

so that

\begin{equation*} \begin{array}[t]{c} \underbrace{U^H y}\\ \widehat y \end{array} = \Sigma \begin{array}[t]{c} \underbrace{V^H x}\\ \widehat x \end{array} \end{equation*}

(\Sigma is a rectangular "diagonal" matrix.)

fit width