Subsection 2.3.2 Geometric interpretation
ΒΆfit widthWe will now illustrate what the SVD Theorem tells us about matrix-vector multiplication (linear transformations) by examining the case where AβR2Γ2. Let A=UΞ£VT be its SVD. (Notice that all matrices are now real valued, and hence VH=VT.) Partition
A=(u0u1)(Ο000Ο1)(v0v1)T.
Since U and V are unitary matrices, {u0,u1} and {v0,v1} form orthonormal bases for the range and domain of A, respectively:
R2: Domain of A:
R2: Range (codomain) of A:


A=(u0u1)(Ο000Ο1)(v0v1)T=[(u0u1)(Ο000Ο1)](v0v1)T=(Ο0u0Ο1u1)(v0v1)T.
Now let us look at how A transforms v0 and v1:
Av0=(Ο0u0Ο1u1)(v0v1)Tv0=(Ο0u0Ο1u1)(10)=Ο0u0
and similarly Av1=Ο1u1. This motivates the pictures in Figure 2.3.2.1.
R2: Domain of A:
R2: Range (codomain) of A:


R2: Domain of A:
R2: Range (codomain) of A:


x=Ο0e0+Ο1e1,
where e0 and e1 are the unit basis vectors. Thus, Ο0 and Ο1 are the coefficients when x is expressed using e0 and e1 as basis. However, we can also express x in the basis given by v0 and v1:
x=VVTβIx=(v0v1)(v0v1)Tx=(v0v1)(vT0xvT1x)=vT0xβΞ±0v0+vT1xβΞ±1v1=Ξ±0v0+Ξ±1v1=(v0v1)(Ξ±0Ξ±1).
Thus, in the basis formed by v0 and v1, its coefficients are Ξ±0 and Ξ±1. Now,
Ax=(Ο0u0Ο1u1)(v0v1)Tx=(Ο0u0Ο1u1)(v0v1)T(v0v1)(Ξ±0Ξ±1)=(Ο0u0Ο1u1)(Ξ±0Ξ±1)=Ξ±0Ο0u0+Ξ±1Ο1u1.
This is illustrated by the following picture, which also captures the fact that the unit ball is mapped to an oval with major axis equal to Ο0=β and minor axis equal to \sigma_1 \text{,} as illustrated in Figure 2.3.2.1 (bottom).
Finally, we show the same insights for general vector x (not necessarily of unit length):
\R^{2} \text{:} Domain of A \text{:}
\R^{2} \text{:} Range (codomain) of A \text{:}


\begin{equation*}
A =
\begin{array}[t]{c}
\underbrace{
\left( \begin{array}{c | c}
u_0 \amp u_1
\end{array} \right)
} \\
U
\end{array}
\begin{array}[t]{c}
\underbrace{
\left( \begin{array}{c | c}
\sigma_0 \amp 0 \\ \hline
0 \amp \sigma_1
\end{array} \right)
} \\
\Sigma
\end{array}
\begin{array}[t]{c}
\underbrace{
\left( \begin{array}{c | c}
v_0 \amp v_1
\end{array} \right)
} \\
V
\end{array}
^T.
\end{equation*}
Now, if we chose to express y using u_0 and u_1 as the basis and express x using v_0 and v_1 as the basis, then
\begin{equation*}
\begin{array}{rcl}
\begin{array}[t]{c}
\underbrace{U U^T} \\
I
\end{array}
y
\amp=\amp
U
\begin{array}[t]{c}
\underbrace{U^T y} \\
\widehat y
\end{array}
=
( u_0^T y ) u_0 + ( u_1^T y ) u_1 \\
\amp=\amp
\left(\begin{array}{c | c}
u_0 \amp u_1
\end{array} \right)
\left( \begin{array}{c}
u_0^T y \\ \hline
u_1^T y
\end{array}\right)
=
U
\begin{array}[t]{c}
\underbrace{
\left( \begin{array}{c}
\widehat \psi_0 \\ \hline
\widehat \psi_1
\end{array}
\right)}\\
\widehat y
\end{array}
\\
\begin{array}[t]{c}
\underbrace{V V^T} \\
I
\end{array}
x
\amp=\amp
V
\begin{array}[t]{c}
\underbrace{V^T x} \\
\widehat x
\end{array}
=
( v_0^T x ) v_0 + ( v_1^T x ) v_1 \\
\amp=\amp
\left(\begin{array}{c | c}
v_0 \amp v_1
\end{array} \right)
\left( \begin{array}{c}
v_0^T x \\ \hline
v_1^T x
\end{array}\right)
=
V
\begin{array}[t]{c}
\underbrace{
\left( \begin{array}{c}
\widehat \chi_0 \\ \hline
\widehat \chi_1.
\end{array}
\right)} \\
\widehat x
\end{array}.
\end{array}
\end{equation*}
If y = A x then
\begin{equation*}
U
\begin{array}[t]{c}
\underbrace{
U^T y
} \\
\widehat y
\end{array}
=
\begin{array}[t]{c}
\underbrace{
U \Sigma V^T x
} \\
A x
\end{array}
= U \Sigma \widehat x
\end{equation*}
so that
\begin{equation*}
\widehat y = \Sigma \widehat x
\end{equation*}
and
\begin{equation*}
\left( \begin{array}{c}
\widehat \psi_0 \\ \hline
\widehat \psi_1.
\end{array}
\right)
=
\left( \begin{array}{c}
\sigma_0 \widehat \chi_0 \\ \hline
\sigma_1 \widehat \chi_1.
\end{array}
\right).
\end{equation*}
Remark 2.3.2.2.
The above discussion shows that if one transforms the input vector x and output vector y into the right bases, then the computation y := A x can be computed with a diagonal matrix instead: \widehat y := \Sigma \widehat x \text{.} Also, solving A x = y for x can be computed by multiplying with the inverse of the diagonal matrix: \widehat x := \Sigma^{-1} \widehat y \text{.}
\begin{equation*}
y = A x
\end{equation*}
then
\begin{equation*}
U^H y = U^H A
\begin{array}[t]{c}
\underbrace{V V^H }\\
I
\end{array}
x
\end{equation*}
so that
\begin{equation*}
\begin{array}[t]{c}
\underbrace{U^H y}\\
\widehat y
\end{array}
= \Sigma
\begin{array}[t]{c}
\underbrace{V^H x}\\
\widehat x
\end{array}
\end{equation*}
(\Sigma is a rectangular "diagonal" matrix.)
fit width