Solutions E Answers and Solutions to Homeworks
Part I Orthogonality
¶Week 1 Norms
¶Section 1.1 Opening Remarks
¶Subsection 1.1.1 Why norms?
¶Homework 1.1.1.1.
Homework 1.1.1.2.
Homework 1.1.1.3.
Homework 1.1.1.4.
Homework 1.1.1.5.
Section 1.2 Vector Norms
¶Subsection 1.2.1 Absolute value
¶Homework 1.2.1.1.
Homework 1.2.1.2.
Homework 1.2.1.3.
Homework 1.2.1.4.
Homework 1.2.1.5.
Homework 1.2.1.6.
Subsection 1.2.2 What is a vector norm?
¶Homework 1.2.2.1.
Subsection 1.2.3 The vector 2-norm (Euclidean length)
¶Homework 1.2.3.2.
Homework 1.2.3.3.
Subsection 1.2.4 The vector \(p\)-norms
¶Homework 1.2.4.1.
Homework 1.2.4.2.
Subsection 1.2.5 Unit ball
¶Homework 1.2.5.1.
Subsection 1.2.6 Equivalence of vector norms
¶Homework 1.2.6.1.
Homework 1.2.6.2.
Homework 1.2.6.3.
HintSolution 1 \(\| x \|_1 \leq C_{1,2} \| x \|_2 \)Solution 2 \(\| x \|_1 \leq C_{1,\infty} \| x \|_\infty\)Solution 3 \(\| x \|_2 \leq C_{2,1} \| x \|_1 \text{:}\)Solution 4 \(\| x \|_2 \leq C_{2,\infty} \| x
\|_\infty \)Solution 5 \(\| x \|_\infty \leq C_{\infty,1} \| x \|_1 \text{:}\)Solution 6 \(\| x \|_\infty \leq C_{\infty,2} \| x \|_2\)Solution 7 Table of constants