Subsection 2.3.4 The Reduced Singular Value Decomposition
ΒΆCorollary 2.3.4.1. Reduced Singular Value Decomposition.
Let \(A \in \Cmxn \) and \(r = \rank( A )\text{.}\) There exist orthonormal matrix \(U_L \in \C^{m \times r} \text{,}\) orthonormal marix \(V_L \in \C^{n \times r} \text{,}\) and matrix \(\Sigma_{TL}\in \R^{r \times r} \) with \(\Sigma_{TL} = \diag{ \sigma_0, \ldots , \sigma_{r-1} }\) and \(\sigma_0 \geq \sigma_1 \geq \cdots \geq \sigma_{r-1} > 0 \) such that \(A = U_L \Sigma_{TL} V_L^H \text{.}\)
Homework 2.3.4.1.
Prove the above corollary.Let \(A = U \Sigma V^H = \FlaOneByTwo{ U_L }{ U_R } \FlaTwoByTwo{\Sigma_{TL}}{0}{0}{0} \FlaOneByTwo{ V_L }{ V_R }^H \) be the SVD of \(A \text{,}\) where \(U_L \in \C^{m \times r} \text{,}\) \(V_L \in \C^{n \times r} \) and \(\Sigma_{TL} \in \R^{r \times r} \) with \(\Sigma_{TL} = \diag{ \sigma_0, \sigma_1, \cdots, \sigma_{r-1}} \) and \(\sigma_0 \geq \sigma_1 \geq \cdots \geq \sigma_{r-1} \gt 0 \text{.}\) Then
Corollary 2.3.4.2.
Let \(A = U_L \Sigma_{TL} V_L^H \) be the Reduced SVD with \(U_L = \left( \begin{array}{ c | c | c } u_0 \amp \cdots \amp u_{r-1} \end{array} \right) \text{,}\) \(V_L = \left( \begin{array}{ c | c | c } v_0 \amp \cdots \amp v_{r-1} \end{array} \right) \text{,}\) and \(\Sigma_{TL} = \left( \begin{array}{ c | c | c } \sigma_0 \amp \amp \\ \hline \amp \ddots \amp \\ \hline \amp \amp \sigma_{r-1} \end{array} \right) \text{.}\) Then
Remark 2.3.4.3.
This last result establishes that any matrix \(A \) with rank \(r \) can be written as a linear combination of \(r\) outer products: