Subsection 2.2.7 Why we love unitary matrices
¶fit widthIn Subsection 1.4.1, we looked at how sensitive solving
Ax=bAx=b
is to a change in the right-hand side
A(x+δx)=b+δbA(x+δx)=b+δb
when AA is nonsingular. We concluded that
‖δx‖‖x‖≤‖A‖‖A−1‖⏟κ(A)‖δb‖‖b‖,
when an induced matrix norm is used. Let's look instead at how sensitive matrix-vector multiplication is.
Homework 2.2.7.1.
Let A∈Cn×n be nonsingular and x∈Cn a nonzero vector. Consider
y=Axandy+δy=A(x+δx).
Show that
‖δy‖‖y‖≤‖A‖‖A−1‖⏟κ(A)‖δx‖‖x‖,
where ‖⋅‖ is an induced matrix norm.
Solution
Since \(x = A^{-1} y \) we know that
\begin{equation*}
\| x \| \leq \| A^{-1} \| \| y \|
\end{equation*}
and hence
\begin{equation}
\frac{1}{\| y \|} \leq \| A^{-1} \| \frac{1}{\| x \|}.\label{chapter03-launch-1}\tag{2.2.1}
\end{equation}
Subtracting \(y = A x \) from \(y + \delta\!y = A ( x + \delta\!x ) \) yields
\begin{equation*}
\delta\!y = A \delta\!x
\end{equation*}
and hence
\begin{equation}
\| \delta\!y \| \leq \| A \| \| \delta\!x \|.\label{chapter03-launch-2}\tag{2.2.2}
\end{equation}
Remark 2.2.7.1.
We conclude that unitary matrices, which do not amplify the 2-norm of a vector or matrix, should be our tool of choice, whenever practical.