Supports for ftytypes
Function:
(defun fty-info-p (x) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-info-p)) (declare (ignorable acl2::__function__)) (and (mbe :logic (and (alistp x) (equal (strip-cars x) '(name category type guards returns))) :exec (fty::alist-with-carsp x '(name category type guards returns))) (b* ((name (cdr (std::da-nth 0 x))) (category (cdr (std::da-nth 1 x))) (type (cdr (std::da-nth 2 x))) (guards (cdr (std::da-nth 3 x))) (returns (cdr (std::da-nth 4 x)))) (and (symbolp name) (symbolp category) (symbolp type) (symbol-listp guards) (symbolp returns))))))
Theorem:
(defthm consp-when-fty-info-p (implies (fty-info-p x) (consp x)) :rule-classes :compound-recognizer)
Function:
(defun fty-info-fix$inline (x) (declare (xargs :guard (fty-info-p x))) (let ((acl2::__function__ 'fty-info-fix)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((name (symbol-fix (cdr (std::da-nth 0 x)))) (category (symbol-fix (cdr (std::da-nth 1 x)))) (type (symbol-fix (cdr (std::da-nth 2 x)))) (guards (symbol-list-fix (cdr (std::da-nth 3 x)))) (returns (symbol-fix (cdr (std::da-nth 4 x))))) (list (cons 'name name) (cons 'category category) (cons 'type type) (cons 'guards guards) (cons 'returns returns))) :exec x)))
Theorem:
(defthm fty-info-p-of-fty-info-fix (b* ((new-x (fty-info-fix$inline x))) (fty-info-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm fty-info-fix-when-fty-info-p (implies (fty-info-p x) (equal (fty-info-fix x) x)))
Function:
(defun fty-info-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fty-info-p acl2::x) (fty-info-p acl2::y)))) (equal (fty-info-fix acl2::x) (fty-info-fix acl2::y)))
Theorem:
(defthm fty-info-equiv-is-an-equivalence (and (booleanp (fty-info-equiv x y)) (fty-info-equiv x x) (implies (fty-info-equiv x y) (fty-info-equiv y x)) (implies (and (fty-info-equiv x y) (fty-info-equiv y z)) (fty-info-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fty-info-equiv-implies-equal-fty-info-fix-1 (implies (fty-info-equiv acl2::x x-equiv) (equal (fty-info-fix acl2::x) (fty-info-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fty-info-fix-under-fty-info-equiv (fty-info-equiv (fty-info-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fty-info-fix-1-forward-to-fty-info-equiv (implies (equal (fty-info-fix acl2::x) acl2::y) (fty-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fty-info-fix-2-forward-to-fty-info-equiv (implies (equal acl2::x (fty-info-fix acl2::y)) (fty-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-info-equiv-of-fty-info-fix-1-forward (implies (fty-info-equiv (fty-info-fix acl2::x) acl2::y) (fty-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-info-equiv-of-fty-info-fix-2-forward (implies (fty-info-equiv acl2::x (fty-info-fix acl2::y)) (fty-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Function:
(defun fty-info->name$inline (x) (declare (xargs :guard (fty-info-p x))) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-info->name)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and t x))) (symbol-fix (cdr (std::da-nth 0 x)))) :exec (cdr (std::da-nth 0 x)))))
Theorem:
(defthm symbolp-of-fty-info->name (b* ((name (fty-info->name$inline x))) (symbolp name)) :rule-classes :rewrite)
Theorem:
(defthm fty-info->name$inline-of-fty-info-fix-x (equal (fty-info->name$inline (fty-info-fix x)) (fty-info->name$inline x)))
Theorem:
(defthm fty-info->name$inline-fty-info-equiv-congruence-on-x (implies (fty-info-equiv x x-equiv) (equal (fty-info->name$inline x) (fty-info->name$inline x-equiv))) :rule-classes :congruence)
Function:
(defun fty-info->category$inline (x) (declare (xargs :guard (fty-info-p x))) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-info->category)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and t x))) (symbol-fix (cdr (std::da-nth 1 x)))) :exec (cdr (std::da-nth 1 x)))))
Theorem:
(defthm symbolp-of-fty-info->category (b* ((category (fty-info->category$inline x))) (symbolp category)) :rule-classes :rewrite)
Theorem:
(defthm fty-info->category$inline-of-fty-info-fix-x (equal (fty-info->category$inline (fty-info-fix x)) (fty-info->category$inline x)))
Theorem:
(defthm fty-info->category$inline-fty-info-equiv-congruence-on-x (implies (fty-info-equiv x x-equiv) (equal (fty-info->category$inline x) (fty-info->category$inline x-equiv))) :rule-classes :congruence)
Function:
(defun fty-info->type$inline (x) (declare (xargs :guard (fty-info-p x))) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-info->type)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and t x))) (symbol-fix (cdr (std::da-nth 2 x)))) :exec (cdr (std::da-nth 2 x)))))
Theorem:
(defthm symbolp-of-fty-info->type (b* ((type (fty-info->type$inline x))) (symbolp type)) :rule-classes :rewrite)
Theorem:
(defthm fty-info->type$inline-of-fty-info-fix-x (equal (fty-info->type$inline (fty-info-fix x)) (fty-info->type$inline x)))
Theorem:
(defthm fty-info->type$inline-fty-info-equiv-congruence-on-x (implies (fty-info-equiv x x-equiv) (equal (fty-info->type$inline x) (fty-info->type$inline x-equiv))) :rule-classes :congruence)
Function:
(defun fty-info->guards$inline (x) (declare (xargs :guard (fty-info-p x))) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-info->guards)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and t x))) (symbol-list-fix (cdr (std::da-nth 3 x)))) :exec (cdr (std::da-nth 3 x)))))
Theorem:
(defthm symbol-listp-of-fty-info->guards (b* ((guards (fty-info->guards$inline x))) (symbol-listp guards)) :rule-classes :rewrite)
Theorem:
(defthm fty-info->guards$inline-of-fty-info-fix-x (equal (fty-info->guards$inline (fty-info-fix x)) (fty-info->guards$inline x)))
Theorem:
(defthm fty-info->guards$inline-fty-info-equiv-congruence-on-x (implies (fty-info-equiv x x-equiv) (equal (fty-info->guards$inline x) (fty-info->guards$inline x-equiv))) :rule-classes :congruence)
Function:
(defun fty-info->returns$inline (x) (declare (xargs :guard (fty-info-p x))) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-info->returns)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and t x))) (symbol-fix (cdr (std::da-nth 4 x)))) :exec (cdr (std::da-nth 4 x)))))
Theorem:
(defthm symbolp-of-fty-info->returns (b* ((returns (fty-info->returns$inline x))) (symbolp returns)) :rule-classes :rewrite)
Theorem:
(defthm fty-info->returns$inline-of-fty-info-fix-x (equal (fty-info->returns$inline (fty-info-fix x)) (fty-info->returns$inline x)))
Theorem:
(defthm fty-info->returns$inline-fty-info-equiv-congruence-on-x (implies (fty-info-equiv x x-equiv) (equal (fty-info->returns$inline x) (fty-info->returns$inline x-equiv))) :rule-classes :congruence)
Function:
(defun fty-info (name category type guards returns) (declare (xargs :guard (and (symbolp name) (symbolp category) (symbolp type) (symbol-listp guards) (symbolp returns)))) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-info)) (declare (ignorable acl2::__function__)) (b* ((name (mbe :logic (symbol-fix name) :exec name)) (category (mbe :logic (symbol-fix category) :exec category)) (type (mbe :logic (symbol-fix type) :exec type)) (guards (mbe :logic (symbol-list-fix guards) :exec guards)) (returns (mbe :logic (symbol-fix returns) :exec returns))) (list (cons 'name name) (cons 'category category) (cons 'type type) (cons 'guards guards) (cons 'returns returns)))))
Theorem:
(defthm fty-info-p-of-fty-info (b* ((x (fty-info name category type guards returns))) (fty-info-p x)) :rule-classes :rewrite)
Theorem:
(defthm fty-info->name-of-fty-info (equal (fty-info->name (fty-info name category type guards returns)) (symbol-fix name)))
Theorem:
(defthm fty-info->category-of-fty-info (equal (fty-info->category (fty-info name category type guards returns)) (symbol-fix category)))
Theorem:
(defthm fty-info->type-of-fty-info (equal (fty-info->type (fty-info name category type guards returns)) (symbol-fix type)))
Theorem:
(defthm fty-info->guards-of-fty-info (equal (fty-info->guards (fty-info name category type guards returns)) (symbol-list-fix guards)))
Theorem:
(defthm fty-info->returns-of-fty-info (equal (fty-info->returns (fty-info name category type guards returns)) (symbol-fix returns)))
Theorem:
(defthm fty-info-of-fields (equal (fty-info (fty-info->name x) (fty-info->category x) (fty-info->type x) (fty-info->guards x) (fty-info->returns x)) (fty-info-fix x)))
Theorem:
(defthm fty-info-fix-when-fty-info (equal (fty-info-fix x) (fty-info (fty-info->name x) (fty-info->category x) (fty-info->type x) (fty-info->guards x) (fty-info->returns x))))
Theorem:
(defthm equal-of-fty-info (equal (equal (fty-info name category type guards returns) x) (and (fty-info-p x) (equal (fty-info->name x) (symbol-fix name)) (equal (fty-info->category x) (symbol-fix category)) (equal (fty-info->type x) (symbol-fix type)) (equal (fty-info->guards x) (symbol-list-fix guards)) (equal (fty-info->returns x) (symbol-fix returns)))))
Theorem:
(defthm fty-info-of-symbol-fix-name (equal (fty-info (symbol-fix name) category type guards returns) (fty-info name category type guards returns)))
Theorem:
(defthm fty-info-symbol-equiv-congruence-on-name (implies (acl2::symbol-equiv name name-equiv) (equal (fty-info name category type guards returns) (fty-info name-equiv category type guards returns))) :rule-classes :congruence)
Theorem:
(defthm fty-info-of-symbol-fix-category (equal (fty-info name (symbol-fix category) type guards returns) (fty-info name category type guards returns)))
Theorem:
(defthm fty-info-symbol-equiv-congruence-on-category (implies (acl2::symbol-equiv category category-equiv) (equal (fty-info name category type guards returns) (fty-info name category-equiv type guards returns))) :rule-classes :congruence)
Theorem:
(defthm fty-info-of-symbol-fix-type (equal (fty-info name category (symbol-fix type) guards returns) (fty-info name category type guards returns)))
Theorem:
(defthm fty-info-symbol-equiv-congruence-on-type (implies (acl2::symbol-equiv type type-equiv) (equal (fty-info name category type guards returns) (fty-info name category type-equiv guards returns))) :rule-classes :congruence)
Theorem:
(defthm fty-info-of-symbol-list-fix-guards (equal (fty-info name category type (symbol-list-fix guards) returns) (fty-info name category type guards returns)))
Theorem:
(defthm fty-info-symbol-list-equiv-congruence-on-guards (implies (acl2::symbol-list-equiv guards guards-equiv) (equal (fty-info name category type guards returns) (fty-info name category type guards-equiv returns))) :rule-classes :congruence)
Theorem:
(defthm fty-info-of-symbol-fix-returns (equal (fty-info name category type guards (symbol-fix returns)) (fty-info name category type guards returns)))
Theorem:
(defthm fty-info-symbol-equiv-congruence-on-returns (implies (acl2::symbol-equiv returns returns-equiv) (equal (fty-info name category type guards returns) (fty-info name category type guards returns-equiv))) :rule-classes :congruence)
Theorem:
(defthm fty-info-fix-redef (equal (fty-info-fix x) (fty-info (fty-info->name x) (fty-info->category x) (fty-info->type x) (fty-info->guards x) (fty-info->returns x))) :rule-classes :definition)
Function:
(defun fty-info-alist-p (x) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-info-alist-p)) (declare (ignorable acl2::__function__)) (if (atom x) (eq x nil) (and (consp (car x)) (symbolp (caar x)) (fty-info-p (cdar x)) (fty-info-alist-p (cdr x))))))
Theorem:
(defthm fty-info-alist-p-of-append (equal (fty-info-alist-p (append acl2::a acl2::b)) (and (fty-info-alist-p (acl2::list-fix acl2::a)) (fty-info-alist-p acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-info-alist-p-of-rev (equal (fty-info-alist-p (acl2::rev acl2::x)) (fty-info-alist-p (acl2::list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-info-alist-p-of-list-fix (implies (fty-info-alist-p acl2::x) (fty-info-alist-p (acl2::list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-fty-info-alist-p-compound-recognizer (implies (fty-info-alist-p acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm fty-info-alist-p-when-not-consp (implies (not (consp acl2::x)) (equal (fty-info-alist-p acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-info-alist-p-of-cdr-when-fty-info-alist-p (implies (fty-info-alist-p (double-rewrite acl2::x)) (fty-info-alist-p (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-info-alist-p-of-cons (equal (fty-info-alist-p (cons acl2::a acl2::x)) (and (and (consp acl2::a) (symbolp (car acl2::a)) (fty-info-p (cdr acl2::a))) (fty-info-alist-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-info-alist-p-of-remove-assoc (implies (fty-info-alist-p acl2::x) (fty-info-alist-p (remove-assoc-equal acl2::name acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-info-alist-p-of-put-assoc (implies (and (fty-info-alist-p acl2::x)) (iff (fty-info-alist-p (put-assoc-equal acl2::name acl2::val acl2::x)) (and (symbolp acl2::name) (fty-info-p acl2::val)))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-info-alist-p-of-fast-alist-clean (implies (fty-info-alist-p acl2::x) (fty-info-alist-p (fast-alist-clean acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-info-alist-p-of-hons-shrink-alist (implies (and (fty-info-alist-p acl2::x) (fty-info-alist-p acl2::y)) (fty-info-alist-p (hons-shrink-alist acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-info-alist-p-of-hons-acons (equal (fty-info-alist-p (hons-acons acl2::a acl2::n acl2::x)) (and (symbolp acl2::a) (fty-info-p acl2::n) (fty-info-alist-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-info-p-of-cdr-of-hons-assoc-equal-when-fty-info-alist-p (implies (fty-info-alist-p acl2::x) (iff (fty-info-p (cdr (hons-assoc-equal acl2::k acl2::x))) (or (hons-assoc-equal acl2::k acl2::x) (fty-info-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-fty-info-alist-p-rewrite (implies (fty-info-alist-p acl2::x) (alistp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-fty-info-alist-p (implies (fty-info-alist-p acl2::x) (alistp acl2::x)) :rule-classes :tau-system)
Theorem:
(defthm fty-info-p-of-cdar-when-fty-info-alist-p (implies (fty-info-alist-p acl2::x) (iff (fty-info-p (cdar acl2::x)) (or (consp acl2::x) (fty-info-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm symbolp-of-caar-when-fty-info-alist-p (implies (fty-info-alist-p acl2::x) (iff (symbolp (caar acl2::x)) (or (consp acl2::x) (symbolp nil)))) :rule-classes ((:rewrite)))
Function:
(defun fty-info-alist-fix$inline (x) (declare (xargs :guard (fty-info-alist-p x))) (let ((acl2::__function__ 'fty-info-alist-fix)) (declare (ignorable acl2::__function__)) (mbe :logic (if (atom x) nil (if (consp (car x)) (cons (cons (symbol-fix (caar x)) (fty-info-fix (cdar x))) (fty-info-alist-fix (cdr x))) (fty-info-alist-fix (cdr x)))) :exec x)))
Theorem:
(defthm fty-info-alist-p-of-fty-info-alist-fix (b* ((fty::newx (fty-info-alist-fix$inline x))) (fty-info-alist-p fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm fty-info-alist-fix-when-fty-info-alist-p (implies (fty-info-alist-p x) (equal (fty-info-alist-fix x) x)))
Function:
(defun fty-info-alist-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fty-info-alist-p acl2::x) (fty-info-alist-p acl2::y)))) (equal (fty-info-alist-fix acl2::x) (fty-info-alist-fix acl2::y)))
Theorem:
(defthm fty-info-alist-equiv-is-an-equivalence (and (booleanp (fty-info-alist-equiv x y)) (fty-info-alist-equiv x x) (implies (fty-info-alist-equiv x y) (fty-info-alist-equiv y x)) (implies (and (fty-info-alist-equiv x y) (fty-info-alist-equiv y z)) (fty-info-alist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fty-info-alist-equiv-implies-equal-fty-info-alist-fix-1 (implies (fty-info-alist-equiv acl2::x x-equiv) (equal (fty-info-alist-fix acl2::x) (fty-info-alist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fty-info-alist-fix-under-fty-info-alist-equiv (fty-info-alist-equiv (fty-info-alist-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fty-info-alist-fix-1-forward-to-fty-info-alist-equiv (implies (equal (fty-info-alist-fix acl2::x) acl2::y) (fty-info-alist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fty-info-alist-fix-2-forward-to-fty-info-alist-equiv (implies (equal acl2::x (fty-info-alist-fix acl2::y)) (fty-info-alist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-info-alist-equiv-of-fty-info-alist-fix-1-forward (implies (fty-info-alist-equiv (fty-info-alist-fix acl2::x) acl2::y) (fty-info-alist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-info-alist-equiv-of-fty-info-alist-fix-2-forward (implies (fty-info-alist-equiv acl2::x (fty-info-alist-fix acl2::y)) (fty-info-alist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm cons-of-symbol-fix-k-under-fty-info-alist-equiv (fty-info-alist-equiv (cons (cons (symbol-fix acl2::k) acl2::v) acl2::x) (cons (cons acl2::k acl2::v) acl2::x)))
Theorem:
(defthm cons-symbol-equiv-congruence-on-k-under-fty-info-alist-equiv (implies (acl2::symbol-equiv acl2::k k-equiv) (fty-info-alist-equiv (cons (cons acl2::k acl2::v) acl2::x) (cons (cons k-equiv acl2::v) acl2::x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-fty-info-fix-v-under-fty-info-alist-equiv (fty-info-alist-equiv (cons (cons acl2::k (fty-info-fix acl2::v)) acl2::x) (cons (cons acl2::k acl2::v) acl2::x)))
Theorem:
(defthm cons-fty-info-equiv-congruence-on-v-under-fty-info-alist-equiv (implies (fty-info-equiv acl2::v v-equiv) (fty-info-alist-equiv (cons (cons acl2::k acl2::v) acl2::x) (cons (cons acl2::k v-equiv) acl2::x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-fty-info-alist-fix-y-under-fty-info-alist-equiv (fty-info-alist-equiv (cons acl2::x (fty-info-alist-fix acl2::y)) (cons acl2::x acl2::y)))
Theorem:
(defthm cons-fty-info-alist-equiv-congruence-on-y-under-fty-info-alist-equiv (implies (fty-info-alist-equiv acl2::y y-equiv) (fty-info-alist-equiv (cons acl2::x acl2::y) (cons acl2::x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm fty-info-alist-fix-of-acons (equal (fty-info-alist-fix (cons (cons acl2::a acl2::b) x)) (cons (cons (symbol-fix acl2::a) (fty-info-fix acl2::b)) (fty-info-alist-fix x))))
Theorem:
(defthm fty-info-alist-fix-of-append (equal (fty-info-alist-fix (append std::a std::b)) (append (fty-info-alist-fix std::a) (fty-info-alist-fix std::b))))
Theorem:
(defthm consp-car-of-fty-info-alist-fix (equal (consp (car (fty-info-alist-fix x))) (consp (fty-info-alist-fix x))))
Function:
(defun make-inline (name) (declare (xargs :guard (symbolp name))) (let ((acl2::__function__ 'make-inline)) (declare (ignorable acl2::__function__)) (b* ((name (symbol-fix name)) (name-str (symbol-name name)) (pkg-str (symbol-package-name name)) (inlined-name (concatenate 'string name-str "$INLINE"))) (intern$ inlined-name pkg-str))))
Theorem:
(defthm symbolp-of-make-inline (b* ((i (make-inline name))) (symbolp i)) :rule-classes :rewrite)
Function:
(defun generate-field-acc (name pred field acc) (declare (xargs :guard (and (symbolp name) (symbolp pred) (fty::flexprod-field-p field) (fty-info-alist-p acc)))) (let ((acl2::__function__ 'generate-field-acc)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-info-alist-fix acc)) ((unless (fty::flexprod-field-p field)) acc) (name (symbol-fix name)) (pred (symbol-fix pred)) (field-acc (fty::flexprod-field->acc-name field)) ((unless (symbolp field-acc)) (prog2$ (er hard? 'fty=>generate-field-acc "Should be a symbolp: ~q0" field-acc) acc)) (field-type (fty::flexprod-field->type field)) ((unless (symbolp field-type)) (prog2$ (er hard? 'fty=>generate-field-acc "Should be a symbolp: ~q0" field-type) acc))) (acons (make-inline field-acc) (make-fty-info :name name :category :prod :type :field :guards (list pred) :returns field-type) acc))))
Theorem:
(defthm fty-info-alist-p-of-generate-field-acc (b* ((alst (generate-field-acc name pred field acc))) (fty-info-alist-p alst)) :rule-classes :rewrite)
Function:
(defun generate-field-acc-lst (name pred fields acc) (declare (xargs :guard (and (symbolp name) (symbolp pred) (fty-info-alist-p acc)))) (let ((acl2::__function__ 'generate-field-acc-lst)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-info-alist-fix acc)) ((unless (consp fields)) acc) ((cons first rest) fields) ((unless (fty::flexprod-field-p first)) (generate-field-acc-lst name pred rest acc))) (generate-field-acc-lst name pred rest (generate-field-acc name pred first acc)))))
Theorem:
(defthm fty-info-alist-p-of-generate-field-acc-lst (b* ((alst (generate-field-acc-lst name pred fields acc))) (fty-info-alist-p alst)) :rule-classes :rewrite)
Function:
(defun generate-field-type-lst (fields) (declare (xargs :guard t)) (let ((acl2::__function__ 'generate-field-type-lst)) (declare (ignorable acl2::__function__)) (b* (((unless (consp fields)) nil) ((cons first rest) fields) ((unless (fty::flexprod-field-p first)) (generate-field-type-lst rest)) (type (fty::flexprod-field->type first)) ((unless (symbolp type)) (er hard? 'fty=>generate-field-type-lst "Should be a symbolp: ~q0" type))) (cons type (generate-field-type-lst rest)))))
Theorem:
(defthm symbol-listp-of-generate-field-type-lst (b* ((g (generate-field-type-lst fields))) (symbol-listp g)) :rule-classes :rewrite)
Function:
(defun generate-prod (name pred fix prod acc) (declare (xargs :guard (and (symbolp name) (symbolp pred) (symbolp fix) (fty::flexprod-p prod) (fty-info-alist-p acc)))) (let ((acl2::__function__ 'generate-prod)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-info-alist-fix acc)) ((unless (fty::flexprod-p prod)) acc) (name (symbol-fix name)) (pred (symbol-fix pred)) (fix (symbol-fix fix)) (fields (fty::flexprod->fields prod)) (acc-p (acons pred (make-fty-info :name name :category :prod :type :recognizer :guards nil :returns 'booleanp) acc)) (acc-fix (acons (make-inline fix) (make-fty-info :name name :category :prod :type :fix :guards (list pred) :returns pred) acc-p)) (acc-const (acons name (make-fty-info :name name :category :prod :type :constructor :guards (generate-field-type-lst fields) :returns pred) acc-fix))) (generate-field-acc-lst name pred fields acc-const))))
Theorem:
(defthm fty-info-alist-p-of-generate-prod (b* ((alst (generate-prod name pred fix prod acc))) (fty-info-alist-p alst)) :rule-classes :rewrite)
Function:
(defun generate-option (name pred fix prod acc) (declare (xargs :guard (and (symbolp name) (symbolp pred) (symbolp fix) (fty::flexprod-p prod) (fty-info-alist-p acc)))) (let ((acl2::__function__ 'generate-option)) (declare (ignorable acl2::__function__)) (b* ((name (symbol-fix name)) (pred (symbol-fix pred)) (fix (symbol-fix fix)) (acc (fty-info-alist-fix acc)) ((unless (fty::flexprod-p prod)) acc) (fields (fty::flexprod->fields prod)) ((unless (and (consp fields) (null (cdr fields)))) (prog2$ (er hard? 'fty=>generate-option "fields incorrect for option some type: ~q0" fields) acc)) (some-name (fty::flexprod->type-name prod)) ((unless (symbolp some-name)) (prog2$ (er hard? 'fty=>generate-option "Should be a symbolp: ~q0" some-name) acc)) (field (car fields)) ((unless (fty::flexprod-field-p field)) (prog2$ (er hard? 'fty=>generate-option "needs to be a field: ~q0" field) acc)) (accessor (fty::flexprod-field->acc-name field)) ((unless (symbolp accessor)) (prog2$ (er hard? 'fty=>generate-option "Should be a symbolp: ~q0" accessor) acc)) (acc-type (fty::flexprod-field->type field)) ((unless (symbolp acc-type)) (prog2$ (er hard? 'fty=>generate-option "Should be a symbolp: ~q0" acc-type) acc)) (acc-p (acons pred (make-fty-info :name name :category :option :type :recognizer :guards nil :returns 'booleanp) acc)) (acc-some (acons some-name (make-fty-info :name name :category :option :type :constructor :guards (list acc-type) :returns pred) acc-p)) (acc-some-val (acons (make-inline accessor) (make-fty-info :name name :category :option :type :field :guards (list pred) :returns acc-type) acc-some))) (acons (make-inline fix) (make-fty-info :name name :category :option :type :fix :guards (list pred) :returns pred) acc-some-val))))
Theorem:
(defthm fty-info-alist-p-of-generate-option (b* ((alst (generate-option name pred fix prod acc))) (fty-info-alist-p alst)) :rule-classes :rewrite)
Function:
(defun generate-flexsum (type acc) (declare (xargs :guard (and (fty::flexsum-p type) (fty-info-alist-p acc)))) (let ((acl2::__function__ 'generate-flexsum)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-info-alist-fix acc)) ((unless (fty::flexsum-p type)) acc) (prods (fty::flexsum->prods type)) ((unless (consp prods)) (prog2$ (cw "Warning: empty defprod ~q0" prods) acc)) (name (fty::flexsum->name type)) ((unless (symbolp name)) (prog2$ (er hard? 'fty=>generate-flexsum "Should be a symbolp: ~q0" name) acc)) (pred (fty::flexsum->pred type)) ((unless (symbolp pred)) (prog2$ (er hard? 'fty=>generate-flexsum "Should be a symbolp: ~q0" pred) acc)) (fix (fty::flexsum->fix type)) ((unless (symbolp fix)) (prog2$ (er hard? 'fty=>generate-flexsum "Should be a symbolp: ~q0" fix) acc)) ((unless (or (equal (len prods) 1) (equal (len prods) 2))) (prog2$ (cw "Warning: tagsum not supported ~q0" prods) acc))) (cond ((and (equal (len prods) 1) (fty::flexprod-p (car prods))) (generate-prod name pred fix (car prods) acc)) ((and (equal (len prods) 2) (fty::flexprod-p (car prods)) (fty::flexprod-p (cadr prods)) (and (equal (fty::flexprod->kind (car prods)) :none) (equal (fty::flexprod->kind (cadr prods)) :some))) (generate-option name pred fix (cadr prods) acc)) ((and (equal (len prods) 2) (fty::flexprod-p (car prods)) (fty::flexprod-p (cadr prods)) (and (equal (fty::flexprod->kind (cadr prods)) :none) (equal (fty::flexprod->kind (car prods)) :some))) (generate-option name pred fix (car prods) acc)) (t acc)))))
Theorem:
(defthm fty-info-alist-p-of-generate-flexsum (b* ((alst (generate-flexsum type acc))) (fty-info-alist-p alst)) :rule-classes :rewrite)
Function:
(defun generate-flexlist (flexlst acc) (declare (xargs :guard (and (fty::flexlist-p flexlst) (fty-info-alist-p acc)))) (let ((acl2::__function__ 'generate-flexlist)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-info-alist-fix acc)) ((unless (fty::flexlist-p flexlst)) acc) ((unless (fty::flexlist->true-listp flexlst)) (prog2$ (er hard? 'fty=>generate-flexlist "Smtlink only supports ~ deflist that are true-listp. This one is not a ~ true-listp : ~q0" flexlst) acc)) (name (fty::flexlist->name flexlst)) ((unless (symbolp name)) (prog2$ (er hard? 'fty=>generate-flexlist "Should be a symbolp: ~q0" name) acc)) (pred (fty::flexlist->pred flexlst)) ((unless (symbolp pred)) (prog2$ (er hard? 'fty=>generate-flexlist "Should be a symbolp: ~q0" pred) acc)) (fix (fty::flexlist->fix flexlst)) ((unless (symbolp fix)) (prog2$ (er hard? 'fty=>generate-flexlist "Should be a symbolp: ~q0" fix) acc)) (acc-p (acons pred (make-fty-info :name name :category :list :type :recognizer :guards nil :returns 'booleanp) acc))) (acons (make-inline fix) (make-fty-info :name name :category :list :type :fix :guards (list pred) :returns pred) acc-p))))
Theorem:
(defthm fty-info-alist-p-of-generate-flexlist (b* ((alst (generate-flexlist flexlst acc))) (fty-info-alist-p alst)) :rule-classes :rewrite)
Function:
(defun generate-flexalist (flexalst acc) (declare (xargs :guard (and (fty::flexalist-p flexalst) (fty-info-alist-p acc)))) (let ((acl2::__function__ 'generate-flexalist)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-info-alist-fix acc)) ((unless (fty::flexalist-p flexalst)) acc) ((unless (fty::flexalist->true-listp flexalst)) (prog2$ (er hard? 'fty=>generate-flexalist "Smtlink only supports ~ deflist that are true-listp. This one is not a ~ true-listp : ~q0" flexalst) acc)) (name (fty::flexalist->name flexalst)) ((unless (symbolp name)) (prog2$ (er hard? 'fty=>generate-flexalist "Should be a symbolp: ~q0" name) acc)) (pred (fty::flexalist->pred flexalst)) ((unless (symbolp pred)) (prog2$ (er hard? 'fty=>generate-flexalist "Should be a symbolp: ~q0" pred) acc)) (fix (fty::flexalist->fix flexalst)) ((unless (symbolp fix)) (prog2$ (er hard? 'fty=>generate-flexalist "Should be a symbolp: ~q0" fix) acc)) (acc-p (acons pred (make-fty-info :name name :category :alist :type :recognizer :guards nil :returns 'booleanp) acc))) (acons (make-inline fix) (make-fty-info :name name :category :alist :type :fix :guards (list pred) :returns pred) acc-p))))
Theorem:
(defthm fty-info-alist-p-of-generate-flexalist (b* ((alst (generate-flexalist flexalst acc))) (fty-info-alist-p alst)) :rule-classes :rewrite)
Function:
(defun generate-fty-info-alist-rec (fty acc flextypes-table) (declare (xargs :guard (and (symbol-listp fty) (fty-info-alist-p acc) (alistp flextypes-table)))) (let ((acl2::__function__ 'generate-fty-info-alist-rec)) (declare (ignorable acl2::__function__)) (b* ((fty (symbol-list-fix fty)) (acc (fty-info-alist-fix acc)) ((unless (consp fty)) acc) ((cons first rest) fty) (flextypes-table (acl2::alist-fix flextypes-table)) (exist? (assoc-equal first flextypes-table)) ((unless exist?) (prog2$ (cw "Warning: fty type not found ~q0" first) acc)) (agg (cdr exist?)) ((unless (fty::flextypes-p agg)) (prog2$ (er hard? 'fty=>generate-fty-info-alist-rec "Should be a flextypes, but ~ found ~q0" agg) acc)) (types (fty::flextypes->types agg)) ((if (or (atom types) (> (len types) 1))) (prog2$ (er hard? 'fty=>generate-fty-info-alist-rec "Possible recursive types ~ found, not supported in Smtlink yet.") acc)) (type (car types))) (cond ((fty::flexsum-p type) (generate-fty-info-alist-rec rest (generate-flexsum type acc) flextypes-table)) ((fty::flexlist-p type) (generate-fty-info-alist-rec rest (generate-flexlist type acc) flextypes-table)) ((fty::flexalist-p type) (generate-fty-info-alist-rec rest (generate-flexalist type acc) flextypes-table)) (t (generate-fty-info-alist-rec rest acc flextypes-table))))))
Theorem:
(defthm fty-info-alist-p-of-generate-fty-info-alist-rec (b* ((alst (generate-fty-info-alist-rec fty acc flextypes-table))) (fty-info-alist-p alst)) :rule-classes :rewrite)
Function:
(defun fncall-of-flextype-special (fn-name) (declare (xargs :guard (symbolp fn-name))) (let ((acl2::__function__ 'fncall-of-flextype-special)) (declare (ignorable acl2::__function__)) (if (or (equal fn-name 'cons) (equal fn-name 'car) (equal fn-name 'cdr) (equal fn-name 'consp) (equal fn-name 'acons) (equal fn-name 'assoc-equal)) t nil)))
Theorem:
(defthm booleanp-of-fncall-of-flextype-special (b* ((special? (fncall-of-flextype-special fn-name))) (booleanp special?)) :rule-classes :rewrite)
Function:
(defun fncall-of-flextype (fn-name fty-info) (declare (xargs :guard (and (symbolp fn-name) (fty-info-alist-p fty-info)))) (let ((acl2::__function__ 'fncall-of-flextype)) (declare (ignorable acl2::__function__)) (b* ((fn-name (symbol-fix fn-name)) (fty-info (fty-info-alist-fix fty-info)) (item (assoc-equal fn-name fty-info)) ((if item) t)) (fncall-of-flextype-special fn-name))))
Theorem:
(defthm fncall-of-flextype-conclusion (b* ((flex? (fncall-of-flextype fn-name fty-info))) (implies (and flex? (symbolp fn-name) (fty-info-alist-p fty-info)) (or (assoc-equal fn-name fty-info) (fncall-of-flextype-special fn-name)))) :rule-classes :rewrite)
Function:
(defun typedecl-of-flextype (fn-name fty-info) (declare (xargs :guard (and (symbolp fn-name) (fty-info-alist-p fty-info)))) (let ((acl2::__function__ 'typedecl-of-flextype)) (declare (ignorable acl2::__function__)) (b* ((fn-name (symbol-fix fn-name)) (fty-info (fty-info-alist-fix fty-info)) (item (assoc-equal fn-name fty-info)) ((unless item) nil) (info (cdr item)) (type (fty-info->type info))) (if (equal type :recognizer) t nil))))
Theorem:
(defthm booleanp-of-typedecl-of-flextype (b* ((flex? (typedecl-of-flextype fn-name fty-info))) (booleanp flex?)) :rule-classes :rewrite)
Function:
(defun fixing-of-flextype (fn-name fty-info) (declare (xargs :guard (and (symbolp fn-name) (fty-info-alist-p fty-info)))) (let ((acl2::__function__ 'fixing-of-flextype)) (declare (ignorable acl2::__function__)) (b* ((fn-name (symbol-fix fn-name)) (fty-info (fty-info-alist-fix fty-info)) (item (assoc-equal fn-name fty-info)) ((unless item) (mv nil nil)) (info (cdr item)) (type (fty-info->type info)) ((unless (equal type :fix)) (mv nil nil))) (mv (fty-info->name info) (fty-info->guards info)))))
Theorem:
(defthm symbolp-of-fixing-of-flextype.fixing? (b* (((mv ?fixing? ?guards) (fixing-of-flextype fn-name fty-info))) (symbolp fixing?)) :rule-classes :rewrite)
Theorem:
(defthm symbol-listp-of-fixing-of-flextype.guards (b* (((mv ?fixing? ?guards) (fixing-of-flextype fn-name fty-info))) (symbol-listp guards)) :rule-classes :rewrite)
Function:
(defun fixing-of-flextype-option (fn-name fty-info) (declare (xargs :guard (and (symbolp fn-name) (fty-info-alist-p fty-info)))) (let ((acl2::__function__ 'fixing-of-flextype-option)) (declare (ignorable acl2::__function__)) (b* ((fn-name (symbol-fix fn-name)) (fty-info (fty-info-alist-fix fty-info)) (item (assoc-equal fn-name fty-info)) ((unless item) nil) (info (cdr item)) (type (fty-info->type info)) ((unless (equal type :fix)) nil)) (equal (fty-info->category info) :option))))
Theorem:
(defthm symbolp-of-fixing-of-flextype-option (b* ((fixing? (fixing-of-flextype-option fn-name fty-info))) (symbolp fixing?)) :rule-classes :rewrite)
Function:
(defun fncall-of-flextype-option (fn-name fty-info) (declare (xargs :guard (and (symbolp fn-name) (fty-info-alist-p fty-info)))) (let ((acl2::__function__ 'fncall-of-flextype-option)) (declare (ignorable acl2::__function__)) (b* ((fn-name (symbol-fix fn-name)) (fty-info (fty-info-alist-fix fty-info)) (item (assoc-equal fn-name fty-info)) ((unless item) nil) (info (cdr item))) (equal (fty-info->category info) :option))))
Theorem:
(defthm booleanp-of-fncall-of-flextype-option (b* ((option? (fncall-of-flextype-option fn-name fty-info))) (booleanp option?)) :rule-classes :rewrite)
Function:
(defun fty-field-alist-p (x) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-field-alist-p)) (declare (ignorable acl2::__function__)) (if (atom x) (eq x nil) (and (consp (car x)) (symbolp (caar x)) (symbolp (cdar x)) (fty-field-alist-p (cdr x))))))
Theorem:
(defthm fty-field-alist-p-of-append (equal (fty-field-alist-p (append acl2::a acl2::b)) (and (fty-field-alist-p (acl2::list-fix acl2::a)) (fty-field-alist-p acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-field-alist-p-of-rev (equal (fty-field-alist-p (acl2::rev acl2::x)) (fty-field-alist-p (acl2::list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-field-alist-p-of-list-fix (implies (fty-field-alist-p acl2::x) (fty-field-alist-p (acl2::list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-fty-field-alist-p-compound-recognizer (implies (fty-field-alist-p acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm fty-field-alist-p-when-not-consp (implies (not (consp acl2::x)) (equal (fty-field-alist-p acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-field-alist-p-of-cdr-when-fty-field-alist-p (implies (fty-field-alist-p (double-rewrite acl2::x)) (fty-field-alist-p (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-field-alist-p-of-cons (equal (fty-field-alist-p (cons acl2::a acl2::x)) (and (and (consp acl2::a) (symbolp (car acl2::a)) (symbolp (cdr acl2::a))) (fty-field-alist-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-field-alist-p-of-remove-assoc (implies (fty-field-alist-p acl2::x) (fty-field-alist-p (remove-assoc-equal acl2::name acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-field-alist-p-of-put-assoc (implies (and (fty-field-alist-p acl2::x)) (iff (fty-field-alist-p (put-assoc-equal acl2::name acl2::val acl2::x)) (and (symbolp acl2::name) (symbolp acl2::val)))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-field-alist-p-of-fast-alist-clean (implies (fty-field-alist-p acl2::x) (fty-field-alist-p (fast-alist-clean acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-field-alist-p-of-hons-shrink-alist (implies (and (fty-field-alist-p acl2::x) (fty-field-alist-p acl2::y)) (fty-field-alist-p (hons-shrink-alist acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-field-alist-p-of-hons-acons (equal (fty-field-alist-p (hons-acons acl2::a acl2::n acl2::x)) (and (symbolp acl2::a) (symbolp acl2::n) (fty-field-alist-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm symbolp-of-cdr-of-hons-assoc-equal-when-fty-field-alist-p (implies (fty-field-alist-p acl2::x) (iff (symbolp (cdr (hons-assoc-equal acl2::k acl2::x))) (or (hons-assoc-equal acl2::k acl2::x) (symbolp nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-fty-field-alist-p-rewrite (implies (fty-field-alist-p acl2::x) (alistp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-fty-field-alist-p (implies (fty-field-alist-p acl2::x) (alistp acl2::x)) :rule-classes :tau-system)
Theorem:
(defthm symbolp-of-cdar-when-fty-field-alist-p (implies (fty-field-alist-p acl2::x) (iff (symbolp (cdar acl2::x)) (or (consp acl2::x) (symbolp nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm symbolp-of-caar-when-fty-field-alist-p (implies (fty-field-alist-p acl2::x) (iff (symbolp (caar acl2::x)) (or (consp acl2::x) (symbolp nil)))) :rule-classes ((:rewrite)))
Function:
(defun fty-field-alist-fix$inline (x) (declare (xargs :guard (fty-field-alist-p x))) (let ((acl2::__function__ 'fty-field-alist-fix)) (declare (ignorable acl2::__function__)) (mbe :logic (if (atom x) nil (if (consp (car x)) (cons (cons (symbol-fix (caar x)) (symbol-fix (cdar x))) (fty-field-alist-fix (cdr x))) (fty-field-alist-fix (cdr x)))) :exec x)))
Theorem:
(defthm fty-field-alist-p-of-fty-field-alist-fix (b* ((fty::newx (fty-field-alist-fix$inline x))) (fty-field-alist-p fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm fty-field-alist-fix-when-fty-field-alist-p (implies (fty-field-alist-p x) (equal (fty-field-alist-fix x) x)))
Function:
(defun fty-field-alist-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fty-field-alist-p acl2::x) (fty-field-alist-p acl2::y)))) (equal (fty-field-alist-fix acl2::x) (fty-field-alist-fix acl2::y)))
Theorem:
(defthm fty-field-alist-equiv-is-an-equivalence (and (booleanp (fty-field-alist-equiv x y)) (fty-field-alist-equiv x x) (implies (fty-field-alist-equiv x y) (fty-field-alist-equiv y x)) (implies (and (fty-field-alist-equiv x y) (fty-field-alist-equiv y z)) (fty-field-alist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fty-field-alist-equiv-implies-equal-fty-field-alist-fix-1 (implies (fty-field-alist-equiv acl2::x x-equiv) (equal (fty-field-alist-fix acl2::x) (fty-field-alist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fty-field-alist-fix-under-fty-field-alist-equiv (fty-field-alist-equiv (fty-field-alist-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fty-field-alist-fix-1-forward-to-fty-field-alist-equiv (implies (equal (fty-field-alist-fix acl2::x) acl2::y) (fty-field-alist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fty-field-alist-fix-2-forward-to-fty-field-alist-equiv (implies (equal acl2::x (fty-field-alist-fix acl2::y)) (fty-field-alist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-field-alist-equiv-of-fty-field-alist-fix-1-forward (implies (fty-field-alist-equiv (fty-field-alist-fix acl2::x) acl2::y) (fty-field-alist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-field-alist-equiv-of-fty-field-alist-fix-2-forward (implies (fty-field-alist-equiv acl2::x (fty-field-alist-fix acl2::y)) (fty-field-alist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm cons-of-symbol-fix-k-under-fty-field-alist-equiv (fty-field-alist-equiv (cons (cons (symbol-fix acl2::k) acl2::v) acl2::x) (cons (cons acl2::k acl2::v) acl2::x)))
Theorem:
(defthm cons-symbol-equiv-congruence-on-k-under-fty-field-alist-equiv (implies (acl2::symbol-equiv acl2::k k-equiv) (fty-field-alist-equiv (cons (cons acl2::k acl2::v) acl2::x) (cons (cons k-equiv acl2::v) acl2::x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-symbol-fix-v-under-fty-field-alist-equiv (fty-field-alist-equiv (cons (cons acl2::k (symbol-fix acl2::v)) acl2::x) (cons (cons acl2::k acl2::v) acl2::x)))
Theorem:
(defthm cons-symbol-equiv-congruence-on-v-under-fty-field-alist-equiv (implies (acl2::symbol-equiv acl2::v v-equiv) (fty-field-alist-equiv (cons (cons acl2::k acl2::v) acl2::x) (cons (cons acl2::k v-equiv) acl2::x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-fty-field-alist-fix-y-under-fty-field-alist-equiv (fty-field-alist-equiv (cons acl2::x (fty-field-alist-fix acl2::y)) (cons acl2::x acl2::y)))
Theorem:
(defthm cons-fty-field-alist-equiv-congruence-on-y-under-fty-field-alist-equiv (implies (fty-field-alist-equiv acl2::y y-equiv) (fty-field-alist-equiv (cons acl2::x acl2::y) (cons acl2::x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm fty-field-alist-fix-of-acons (equal (fty-field-alist-fix (cons (cons acl2::a acl2::b) x)) (cons (cons (symbol-fix acl2::a) (symbol-fix acl2::b)) (fty-field-alist-fix x))))
Theorem:
(defthm fty-field-alist-fix-of-append (equal (fty-field-alist-fix (append std::a std::b)) (append (fty-field-alist-fix std::a) (fty-field-alist-fix std::b))))
Theorem:
(defthm consp-car-of-fty-field-alist-fix (equal (consp (car (fty-field-alist-fix x))) (consp (fty-field-alist-fix x))))
Function:
(defun fty-type-p (x) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-type-p)) (declare (ignorable acl2::__function__)) (and (consp x) (cond ((or (atom x) (eq (car x) :prod)) (and (true-listp (cdr x)) (eql (len (cdr x)) 1) (b* ((fields (std::da-nth 0 (cdr x)))) (fty-field-alist-p fields)))) ((eq (car x) :list) (and (true-listp (cdr x)) (eql (len (cdr x)) 1) (b* ((elt-type (std::da-nth 0 (cdr x)))) (symbolp elt-type)))) ((eq (car x) :alist) (and (true-listp (cdr x)) (eql (len (cdr x)) 2) (b* ((key-type (std::da-nth 0 (cdr x))) (val-type (std::da-nth 1 (cdr x)))) (and (symbolp key-type) (symbolp val-type))))) (t (and (eq (car x) :option) (and (true-listp (cdr x)) (eql (len (cdr x)) 1)) (b* ((some-type (std::da-nth 0 (cdr x)))) (symbolp some-type))))))))
Theorem:
(defthm consp-when-fty-type-p (implies (fty-type-p x) (consp x)) :rule-classes :compound-recognizer)
Function:
(defun fty-type-kind$inline (x) (declare (xargs :guard (fty-type-p x))) (let ((acl2::__function__ 'fty-type-kind)) (declare (ignorable acl2::__function__)) (mbe :logic (cond ((or (atom x) (eq (car x) :prod)) :prod) ((eq (car x) :list) :list) ((eq (car x) :alist) :alist) (t :option)) :exec (car x))))
Theorem:
(defthm fty-type-kind-possibilities (or (equal (fty-type-kind x) :prod) (equal (fty-type-kind x) :list) (equal (fty-type-kind x) :alist) (equal (fty-type-kind x) :option)) :rule-classes ((:forward-chaining :trigger-terms ((fty-type-kind x)))))
Function:
(defun fty-type-fix$inline (x) (declare (xargs :guard (fty-type-p x))) (let ((acl2::__function__ 'fty-type-fix)) (declare (ignorable acl2::__function__)) (mbe :logic (case (fty-type-kind x) (:prod (b* ((fields (fty-field-alist-fix (std::da-nth 0 (cdr x))))) (cons :prod (list fields)))) (:list (b* ((elt-type (symbol-fix (std::da-nth 0 (cdr x))))) (cons :list (list elt-type)))) (:alist (b* ((key-type (symbol-fix (std::da-nth 0 (cdr x)))) (val-type (symbol-fix (std::da-nth 1 (cdr x))))) (cons :alist (list key-type val-type)))) (:option (b* ((some-type (symbol-fix (std::da-nth 0 (cdr x))))) (cons :option (list some-type))))) :exec x)))
Theorem:
(defthm fty-type-p-of-fty-type-fix (b* ((new-x (fty-type-fix$inline x))) (fty-type-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm fty-type-fix-when-fty-type-p (implies (fty-type-p x) (equal (fty-type-fix x) x)))
Function:
(defun fty-type-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fty-type-p acl2::x) (fty-type-p acl2::y)))) (equal (fty-type-fix acl2::x) (fty-type-fix acl2::y)))
Theorem:
(defthm fty-type-equiv-is-an-equivalence (and (booleanp (fty-type-equiv x y)) (fty-type-equiv x x) (implies (fty-type-equiv x y) (fty-type-equiv y x)) (implies (and (fty-type-equiv x y) (fty-type-equiv y z)) (fty-type-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fty-type-equiv-implies-equal-fty-type-fix-1 (implies (fty-type-equiv acl2::x x-equiv) (equal (fty-type-fix acl2::x) (fty-type-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fty-type-fix-under-fty-type-equiv (fty-type-equiv (fty-type-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fty-type-fix-1-forward-to-fty-type-equiv (implies (equal (fty-type-fix acl2::x) acl2::y) (fty-type-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fty-type-fix-2-forward-to-fty-type-equiv (implies (equal acl2::x (fty-type-fix acl2::y)) (fty-type-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-type-equiv-of-fty-type-fix-1-forward (implies (fty-type-equiv (fty-type-fix acl2::x) acl2::y) (fty-type-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-type-equiv-of-fty-type-fix-2-forward (implies (fty-type-equiv acl2::x (fty-type-fix acl2::y)) (fty-type-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-type-kind$inline-of-fty-type-fix-x (equal (fty-type-kind$inline (fty-type-fix x)) (fty-type-kind$inline x)))
Theorem:
(defthm fty-type-kind$inline-fty-type-equiv-congruence-on-x (implies (fty-type-equiv x x-equiv) (equal (fty-type-kind$inline x) (fty-type-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-fty-type-fix (consp (fty-type-fix x)) :rule-classes :type-prescription)
Theorem:
(defthm tag-when-fty-type-p-forward (implies (fty-type-p x) (equal (acl2::tag x) (fty-type-kind x))) :rule-classes ((:forward-chaining :trigger-terms ((fty-type-p x)))))
Theorem:
(defthm tag-of-fty-type-fix (equal (acl2::tag (fty-type-fix x)) (fty-type-kind x)))
Function:
(defun fty-type-prod->fields$inline (x) (declare (xargs :guard (fty-type-p x))) (declare (xargs :guard (equal (fty-type-kind x) :prod))) (let ((acl2::__function__ 'fty-type-prod->fields)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and (equal (fty-type-kind x) :prod) x))) (fty-field-alist-fix (std::da-nth 0 (cdr x)))) :exec (std::da-nth 0 (cdr x)))))
Theorem:
(defthm fty-field-alist-p-of-fty-type-prod->fields (b* ((fields (fty-type-prod->fields$inline x))) (fty-field-alist-p fields)) :rule-classes :rewrite)
Theorem:
(defthm fty-type-prod->fields$inline-of-fty-type-fix-x (equal (fty-type-prod->fields$inline (fty-type-fix x)) (fty-type-prod->fields$inline x)))
Theorem:
(defthm fty-type-prod->fields$inline-fty-type-equiv-congruence-on-x (implies (fty-type-equiv x x-equiv) (equal (fty-type-prod->fields$inline x) (fty-type-prod->fields$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm fty-type-prod->fields-when-wrong-kind (implies (not (equal (fty-type-kind x) :prod)) (equal (fty-type-prod->fields x) (fty-field-alist-fix nil))))
Function:
(defun fty-type-prod (fields) (declare (xargs :guard (fty-field-alist-p fields))) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-type-prod)) (declare (ignorable acl2::__function__)) (b* ((fields (mbe :logic (fty-field-alist-fix fields) :exec fields))) (cons :prod (list fields)))))
Theorem:
(defthm return-type-of-fty-type-prod (b* ((x (fty-type-prod fields))) (and (fty-type-p x) (equal (fty-type-kind x) :prod))) :rule-classes :rewrite)
Theorem:
(defthm fty-type-prod->fields-of-fty-type-prod (equal (fty-type-prod->fields (fty-type-prod fields)) (fty-field-alist-fix fields)))
Theorem:
(defthm fty-type-prod-of-fields (implies (equal (fty-type-kind x) :prod) (equal (fty-type-prod (fty-type-prod->fields x)) (fty-type-fix x))))
Theorem:
(defthm fty-type-fix-when-prod (implies (equal (fty-type-kind x) :prod) (equal (fty-type-fix x) (fty-type-prod (fty-type-prod->fields x)))) :rule-classes ((:rewrite :backchain-limit-lst 0)))
Theorem:
(defthm equal-of-fty-type-prod (equal (equal (fty-type-prod fields) x) (and (fty-type-p x) (equal (fty-type-kind x) :prod) (equal (fty-type-prod->fields x) (fty-field-alist-fix fields)))))
Theorem:
(defthm fty-type-prod-of-fty-field-alist-fix-fields (equal (fty-type-prod (fty-field-alist-fix fields)) (fty-type-prod fields)))
Theorem:
(defthm fty-type-prod-fty-field-alist-equiv-congruence-on-fields (implies (fty-field-alist-equiv fields fields-equiv) (equal (fty-type-prod fields) (fty-type-prod fields-equiv))) :rule-classes :congruence)
Function:
(defun fty-type-list->elt-type$inline (x) (declare (xargs :guard (fty-type-p x))) (declare (xargs :guard (equal (fty-type-kind x) :list))) (let ((acl2::__function__ 'fty-type-list->elt-type)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and (equal (fty-type-kind x) :list) x))) (symbol-fix (std::da-nth 0 (cdr x)))) :exec (std::da-nth 0 (cdr x)))))
Theorem:
(defthm symbolp-of-fty-type-list->elt-type (b* ((elt-type (fty-type-list->elt-type$inline x))) (symbolp elt-type)) :rule-classes :rewrite)
Theorem:
(defthm fty-type-list->elt-type$inline-of-fty-type-fix-x (equal (fty-type-list->elt-type$inline (fty-type-fix x)) (fty-type-list->elt-type$inline x)))
Theorem:
(defthm fty-type-list->elt-type$inline-fty-type-equiv-congruence-on-x (implies (fty-type-equiv x x-equiv) (equal (fty-type-list->elt-type$inline x) (fty-type-list->elt-type$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm fty-type-list->elt-type-when-wrong-kind (implies (not (equal (fty-type-kind x) :list)) (equal (fty-type-list->elt-type x) (symbol-fix nil))))
Function:
(defun fty-type-list (elt-type) (declare (xargs :guard (symbolp elt-type))) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-type-list)) (declare (ignorable acl2::__function__)) (b* ((elt-type (mbe :logic (symbol-fix elt-type) :exec elt-type))) (cons :list (list elt-type)))))
Theorem:
(defthm return-type-of-fty-type-list (b* ((x (fty-type-list elt-type))) (and (fty-type-p x) (equal (fty-type-kind x) :list))) :rule-classes :rewrite)
Theorem:
(defthm fty-type-list->elt-type-of-fty-type-list (equal (fty-type-list->elt-type (fty-type-list elt-type)) (symbol-fix elt-type)))
Theorem:
(defthm fty-type-list-of-fields (implies (equal (fty-type-kind x) :list) (equal (fty-type-list (fty-type-list->elt-type x)) (fty-type-fix x))))
Theorem:
(defthm fty-type-fix-when-list (implies (equal (fty-type-kind x) :list) (equal (fty-type-fix x) (fty-type-list (fty-type-list->elt-type x)))) :rule-classes ((:rewrite :backchain-limit-lst 0)))
Theorem:
(defthm equal-of-fty-type-list (equal (equal (fty-type-list elt-type) x) (and (fty-type-p x) (equal (fty-type-kind x) :list) (equal (fty-type-list->elt-type x) (symbol-fix elt-type)))))
Theorem:
(defthm fty-type-list-of-symbol-fix-elt-type (equal (fty-type-list (symbol-fix elt-type)) (fty-type-list elt-type)))
Theorem:
(defthm fty-type-list-symbol-equiv-congruence-on-elt-type (implies (acl2::symbol-equiv elt-type elt-type-equiv) (equal (fty-type-list elt-type) (fty-type-list elt-type-equiv))) :rule-classes :congruence)
Function:
(defun fty-type-alist->key-type$inline (x) (declare (xargs :guard (fty-type-p x))) (declare (xargs :guard (equal (fty-type-kind x) :alist))) (let ((acl2::__function__ 'fty-type-alist->key-type)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and (equal (fty-type-kind x) :alist) x))) (symbol-fix (std::da-nth 0 (cdr x)))) :exec (std::da-nth 0 (cdr x)))))
Theorem:
(defthm symbolp-of-fty-type-alist->key-type (b* ((key-type (fty-type-alist->key-type$inline x))) (symbolp key-type)) :rule-classes :rewrite)
Theorem:
(defthm fty-type-alist->key-type$inline-of-fty-type-fix-x (equal (fty-type-alist->key-type$inline (fty-type-fix x)) (fty-type-alist->key-type$inline x)))
Theorem:
(defthm fty-type-alist->key-type$inline-fty-type-equiv-congruence-on-x (implies (fty-type-equiv x x-equiv) (equal (fty-type-alist->key-type$inline x) (fty-type-alist->key-type$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm fty-type-alist->key-type-when-wrong-kind (implies (not (equal (fty-type-kind x) :alist)) (equal (fty-type-alist->key-type x) (symbol-fix nil))))
Function:
(defun fty-type-alist->val-type$inline (x) (declare (xargs :guard (fty-type-p x))) (declare (xargs :guard (equal (fty-type-kind x) :alist))) (let ((acl2::__function__ 'fty-type-alist->val-type)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and (equal (fty-type-kind x) :alist) x))) (symbol-fix (std::da-nth 1 (cdr x)))) :exec (std::da-nth 1 (cdr x)))))
Theorem:
(defthm symbolp-of-fty-type-alist->val-type (b* ((val-type (fty-type-alist->val-type$inline x))) (symbolp val-type)) :rule-classes :rewrite)
Theorem:
(defthm fty-type-alist->val-type$inline-of-fty-type-fix-x (equal (fty-type-alist->val-type$inline (fty-type-fix x)) (fty-type-alist->val-type$inline x)))
Theorem:
(defthm fty-type-alist->val-type$inline-fty-type-equiv-congruence-on-x (implies (fty-type-equiv x x-equiv) (equal (fty-type-alist->val-type$inline x) (fty-type-alist->val-type$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm fty-type-alist->val-type-when-wrong-kind (implies (not (equal (fty-type-kind x) :alist)) (equal (fty-type-alist->val-type x) (symbol-fix nil))))
Function:
(defun fty-type-alist (key-type val-type) (declare (xargs :guard (and (symbolp key-type) (symbolp val-type)))) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-type-alist)) (declare (ignorable acl2::__function__)) (b* ((key-type (mbe :logic (symbol-fix key-type) :exec key-type)) (val-type (mbe :logic (symbol-fix val-type) :exec val-type))) (cons :alist (list key-type val-type)))))
Theorem:
(defthm return-type-of-fty-type-alist (b* ((x (fty-type-alist key-type val-type))) (and (fty-type-p x) (equal (fty-type-kind x) :alist))) :rule-classes :rewrite)
Theorem:
(defthm fty-type-alist->key-type-of-fty-type-alist (equal (fty-type-alist->key-type (fty-type-alist key-type val-type)) (symbol-fix key-type)))
Theorem:
(defthm fty-type-alist->val-type-of-fty-type-alist (equal (fty-type-alist->val-type (fty-type-alist key-type val-type)) (symbol-fix val-type)))
Theorem:
(defthm fty-type-alist-of-fields (implies (equal (fty-type-kind x) :alist) (equal (fty-type-alist (fty-type-alist->key-type x) (fty-type-alist->val-type x)) (fty-type-fix x))))
Theorem:
(defthm fty-type-fix-when-alist (implies (equal (fty-type-kind x) :alist) (equal (fty-type-fix x) (fty-type-alist (fty-type-alist->key-type x) (fty-type-alist->val-type x)))) :rule-classes ((:rewrite :backchain-limit-lst 0)))
Theorem:
(defthm equal-of-fty-type-alist (equal (equal (fty-type-alist key-type val-type) x) (and (fty-type-p x) (equal (fty-type-kind x) :alist) (equal (fty-type-alist->key-type x) (symbol-fix key-type)) (equal (fty-type-alist->val-type x) (symbol-fix val-type)))))
Theorem:
(defthm fty-type-alist-of-symbol-fix-key-type (equal (fty-type-alist (symbol-fix key-type) val-type) (fty-type-alist key-type val-type)))
Theorem:
(defthm fty-type-alist-symbol-equiv-congruence-on-key-type (implies (acl2::symbol-equiv key-type key-type-equiv) (equal (fty-type-alist key-type val-type) (fty-type-alist key-type-equiv val-type))) :rule-classes :congruence)
Theorem:
(defthm fty-type-alist-of-symbol-fix-val-type (equal (fty-type-alist key-type (symbol-fix val-type)) (fty-type-alist key-type val-type)))
Theorem:
(defthm fty-type-alist-symbol-equiv-congruence-on-val-type (implies (acl2::symbol-equiv val-type val-type-equiv) (equal (fty-type-alist key-type val-type) (fty-type-alist key-type val-type-equiv))) :rule-classes :congruence)
Function:
(defun fty-type-option->some-type$inline (x) (declare (xargs :guard (fty-type-p x))) (declare (xargs :guard (equal (fty-type-kind x) :option))) (let ((acl2::__function__ 'fty-type-option->some-type)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and (equal (fty-type-kind x) :option) x))) (symbol-fix (std::da-nth 0 (cdr x)))) :exec (std::da-nth 0 (cdr x)))))
Theorem:
(defthm symbolp-of-fty-type-option->some-type (b* ((some-type (fty-type-option->some-type$inline x))) (symbolp some-type)) :rule-classes :rewrite)
Theorem:
(defthm fty-type-option->some-type$inline-of-fty-type-fix-x (equal (fty-type-option->some-type$inline (fty-type-fix x)) (fty-type-option->some-type$inline x)))
Theorem:
(defthm fty-type-option->some-type$inline-fty-type-equiv-congruence-on-x (implies (fty-type-equiv x x-equiv) (equal (fty-type-option->some-type$inline x) (fty-type-option->some-type$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm fty-type-option->some-type-when-wrong-kind (implies (not (equal (fty-type-kind x) :option)) (equal (fty-type-option->some-type x) (symbol-fix nil))))
Function:
(defun fty-type-option (some-type) (declare (xargs :guard (symbolp some-type))) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-type-option)) (declare (ignorable acl2::__function__)) (b* ((some-type (mbe :logic (symbol-fix some-type) :exec some-type))) (cons :option (list some-type)))))
Theorem:
(defthm return-type-of-fty-type-option (b* ((x (fty-type-option some-type))) (and (fty-type-p x) (equal (fty-type-kind x) :option))) :rule-classes :rewrite)
Theorem:
(defthm fty-type-option->some-type-of-fty-type-option (equal (fty-type-option->some-type (fty-type-option some-type)) (symbol-fix some-type)))
Theorem:
(defthm fty-type-option-of-fields (implies (equal (fty-type-kind x) :option) (equal (fty-type-option (fty-type-option->some-type x)) (fty-type-fix x))))
Theorem:
(defthm fty-type-fix-when-option (implies (equal (fty-type-kind x) :option) (equal (fty-type-fix x) (fty-type-option (fty-type-option->some-type x)))) :rule-classes ((:rewrite :backchain-limit-lst 0)))
Theorem:
(defthm equal-of-fty-type-option (equal (equal (fty-type-option some-type) x) (and (fty-type-p x) (equal (fty-type-kind x) :option) (equal (fty-type-option->some-type x) (symbol-fix some-type)))))
Theorem:
(defthm fty-type-option-of-symbol-fix-some-type (equal (fty-type-option (symbol-fix some-type)) (fty-type-option some-type)))
Theorem:
(defthm fty-type-option-symbol-equiv-congruence-on-some-type (implies (acl2::symbol-equiv some-type some-type-equiv) (equal (fty-type-option some-type) (fty-type-option some-type-equiv))) :rule-classes :congruence)
Theorem:
(defthm fty-type-fix-redef (equal (fty-type-fix x) (case (fty-type-kind x) (:prod (fty-type-prod (fty-type-prod->fields x))) (:list (fty-type-list (fty-type-list->elt-type x))) (:alist (fty-type-alist (fty-type-alist->key-type x) (fty-type-alist->val-type x))) (:option (fty-type-option (fty-type-option->some-type x))))) :rule-classes :definition)
Function:
(defun fty-types-p (x) (declare (xargs :guard t)) (let ((acl2::__function__ 'fty-types-p)) (declare (ignorable acl2::__function__)) (if (atom x) (eq x nil) (and (consp (car x)) (symbolp (caar x)) (fty-type-p (cdar x)) (fty-types-p (cdr x))))))
Theorem:
(defthm fty-types-p-of-append (equal (fty-types-p (append acl2::a acl2::b)) (and (fty-types-p (acl2::list-fix acl2::a)) (fty-types-p acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-types-p-of-rev (equal (fty-types-p (acl2::rev acl2::x)) (fty-types-p (acl2::list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-types-p-of-list-fix (implies (fty-types-p acl2::x) (fty-types-p (acl2::list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-fty-types-p-compound-recognizer (implies (fty-types-p acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm fty-types-p-when-not-consp (implies (not (consp acl2::x)) (equal (fty-types-p acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-types-p-of-cdr-when-fty-types-p (implies (fty-types-p (double-rewrite acl2::x)) (fty-types-p (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-types-p-of-cons (equal (fty-types-p (cons acl2::a acl2::x)) (and (and (consp acl2::a) (symbolp (car acl2::a)) (fty-type-p (cdr acl2::a))) (fty-types-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-types-p-of-remove-assoc (implies (fty-types-p acl2::x) (fty-types-p (remove-assoc-equal acl2::name acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-types-p-of-put-assoc (implies (and (fty-types-p acl2::x)) (iff (fty-types-p (put-assoc-equal acl2::name acl2::val acl2::x)) (and (symbolp acl2::name) (fty-type-p acl2::val)))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-types-p-of-fast-alist-clean (implies (fty-types-p acl2::x) (fty-types-p (fast-alist-clean acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-types-p-of-hons-shrink-alist (implies (and (fty-types-p acl2::x) (fty-types-p acl2::y)) (fty-types-p (hons-shrink-alist acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-types-p-of-hons-acons (equal (fty-types-p (hons-acons acl2::a acl2::n acl2::x)) (and (symbolp acl2::a) (fty-type-p acl2::n) (fty-types-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm fty-type-p-of-cdr-of-hons-assoc-equal-when-fty-types-p (implies (fty-types-p acl2::x) (iff (fty-type-p (cdr (hons-assoc-equal acl2::k acl2::x))) (or (hons-assoc-equal acl2::k acl2::x) (fty-type-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-fty-types-p-rewrite (implies (fty-types-p acl2::x) (alistp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-fty-types-p (implies (fty-types-p acl2::x) (alistp acl2::x)) :rule-classes :tau-system)
Theorem:
(defthm fty-type-p-of-cdar-when-fty-types-p (implies (fty-types-p acl2::x) (iff (fty-type-p (cdar acl2::x)) (or (consp acl2::x) (fty-type-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm symbolp-of-caar-when-fty-types-p (implies (fty-types-p acl2::x) (iff (symbolp (caar acl2::x)) (or (consp acl2::x) (symbolp nil)))) :rule-classes ((:rewrite)))
Function:
(defun fty-types-fix$inline (x) (declare (xargs :guard (fty-types-p x))) (let ((acl2::__function__ 'fty-types-fix)) (declare (ignorable acl2::__function__)) (mbe :logic (if (atom x) nil (if (consp (car x)) (cons (cons (symbol-fix (caar x)) (fty-type-fix (cdar x))) (fty-types-fix (cdr x))) (fty-types-fix (cdr x)))) :exec x)))
Theorem:
(defthm fty-types-p-of-fty-types-fix (b* ((fty::newx (fty-types-fix$inline x))) (fty-types-p fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm fty-types-fix-when-fty-types-p (implies (fty-types-p x) (equal (fty-types-fix x) x)))
Function:
(defun fty-types-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fty-types-p acl2::x) (fty-types-p acl2::y)))) (equal (fty-types-fix acl2::x) (fty-types-fix acl2::y)))
Theorem:
(defthm fty-types-equiv-is-an-equivalence (and (booleanp (fty-types-equiv x y)) (fty-types-equiv x x) (implies (fty-types-equiv x y) (fty-types-equiv y x)) (implies (and (fty-types-equiv x y) (fty-types-equiv y z)) (fty-types-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fty-types-equiv-implies-equal-fty-types-fix-1 (implies (fty-types-equiv acl2::x x-equiv) (equal (fty-types-fix acl2::x) (fty-types-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fty-types-fix-under-fty-types-equiv (fty-types-equiv (fty-types-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fty-types-fix-1-forward-to-fty-types-equiv (implies (equal (fty-types-fix acl2::x) acl2::y) (fty-types-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fty-types-fix-2-forward-to-fty-types-equiv (implies (equal acl2::x (fty-types-fix acl2::y)) (fty-types-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-types-equiv-of-fty-types-fix-1-forward (implies (fty-types-equiv (fty-types-fix acl2::x) acl2::y) (fty-types-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-types-equiv-of-fty-types-fix-2-forward (implies (fty-types-equiv acl2::x (fty-types-fix acl2::y)) (fty-types-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm cons-of-symbol-fix-k-under-fty-types-equiv (fty-types-equiv (cons (cons (symbol-fix acl2::k) acl2::v) acl2::x) (cons (cons acl2::k acl2::v) acl2::x)))
Theorem:
(defthm cons-symbol-equiv-congruence-on-k-under-fty-types-equiv (implies (acl2::symbol-equiv acl2::k k-equiv) (fty-types-equiv (cons (cons acl2::k acl2::v) acl2::x) (cons (cons k-equiv acl2::v) acl2::x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-fty-type-fix-v-under-fty-types-equiv (fty-types-equiv (cons (cons acl2::k (fty-type-fix acl2::v)) acl2::x) (cons (cons acl2::k acl2::v) acl2::x)))
Theorem:
(defthm cons-fty-type-equiv-congruence-on-v-under-fty-types-equiv (implies (fty-type-equiv acl2::v v-equiv) (fty-types-equiv (cons (cons acl2::k acl2::v) acl2::x) (cons (cons acl2::k v-equiv) acl2::x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-fty-types-fix-y-under-fty-types-equiv (fty-types-equiv (cons acl2::x (fty-types-fix acl2::y)) (cons acl2::x acl2::y)))
Theorem:
(defthm cons-fty-types-equiv-congruence-on-y-under-fty-types-equiv (implies (fty-types-equiv acl2::y y-equiv) (fty-types-equiv (cons acl2::x acl2::y) (cons acl2::x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm fty-types-fix-of-acons (equal (fty-types-fix (cons (cons acl2::a acl2::b) x)) (cons (cons (symbol-fix acl2::a) (fty-type-fix acl2::b)) (fty-types-fix x))))
Theorem:
(defthm fty-types-fix-of-append (equal (fty-types-fix (append std::a std::b)) (append (fty-types-fix std::a) (fty-types-fix std::b))))
Theorem:
(defthm consp-car-of-fty-types-fix (equal (consp (car (fty-types-fix x))) (consp (fty-types-fix x))))
Function:
(defun generate-type-measure (fty-info acc) (declare (xargs :guard (and (fty-info-alist-p fty-info) (fty-types-p acc)))) (let ((acl2::__function__ 'generate-type-measure)) (declare (ignorable acl2::__function__)) (b* ((fty-info (fty-info-alist-fix fty-info)) (acc (fty-types-fix acc)) (measure (- (len fty-info) (len acc)))) (if (<= measure 0) 0 measure))))
Theorem:
(defthm natp-of-generate-type-measure (b* ((m (generate-type-measure fty-info acc))) (natp m)) :rule-classes :rewrite)
Theorem:
(defthm generate-type-measure-with-fty-types-fix (b* ((m (generate-type-measure fty-info acc))) (equal (generate-type-measure fty-info (fty-types-fix acc)) m)) :rule-classes :rewrite)
Theorem:
(defthm generate-type-measure-increase-prod (b* ((m (generate-type-measure fty-info acc))) (implies (and (not (equal m 0))) (< (generate-type-measure fty-info (acons name prod (fty-types-fix acc))) m))) :rule-classes :rewrite)
Theorem:
(defthm generate-type-measure-increase-option (b* ((m (generate-type-measure fty-info acc))) (implies (and (not (equal m 0))) (< (generate-type-measure fty-info (acons name option (fty-types-fix acc))) m))) :rule-classes :rewrite)
Theorem:
(defthm generate-type-measure-increase-list (b* ((m (generate-type-measure fty-info acc))) (implies (and (not (equal m 0))) (< (generate-type-measure fty-info (acons name list (fty-types-fix acc))) m))) :rule-classes :rewrite)
Theorem:
(defthm generate-type-measure-increase-alist (b* ((m (generate-type-measure fty-info acc))) (implies (and (not (equal m 0))) (< (generate-type-measure fty-info (acons name alist (fty-types-fix acc))) m))) :rule-classes :rewrite)
Function:
(defun smt-types nil (declare (xargs :guard t)) (let ((acl2::__function__ 'smt-types)) (declare (ignorable acl2::__function__)) *smt-types*))
Theorem:
(defthm alistp-of-smt-types (b* ((smt-types (smt-types))) (alistp smt-types)) :rule-classes :rewrite)
Function:
(defun generate-fty-field-alist (fields fty-info) (declare (xargs :guard (fty-info-alist-p fty-info))) (let ((acl2::__function__ 'generate-fty-field-alist)) (declare (ignorable acl2::__function__)) (b* ((fty-info (fty-info-alist-fix fty-info)) ((unless (consp fields)) (mv nil nil)) ((cons first rest) fields) ((unless (fty::flexprod-field-p first)) (prog2$ (er hard? 'fty=>generate-fty-field-alist "Should be a field: ~q0" first) (mv nil nil))) (name (fty::flexprod-field->name first)) ((unless (symbolp name)) (prog2$ (er hard? 'fty=>generate-fty-field-alist "Should be a symbolp: ~q0" name) (mv nil nil))) (type (fty::flexprod-field->type first)) ((unless (symbolp type)) (prog2$ (er hard? 'fty=>generate-fty-field-alist "Should be a symbolp: ~q0" type) (mv nil nil))) ((mv cdr-type-lst cdr-field-alst) (generate-fty-field-alist rest fty-info)) (basic? (assoc-equal type (smt-types))) ((if basic?) (mv (cons type cdr-type-lst) (acons name type cdr-field-alst))) (info (assoc-equal type fty-info)) ((unless info) (prog2$ (er hard? 'fty=>generate-fty-field-alist "type ~p0 doesn't ~ exist~%" type) (mv nil nil))) (type-name (fty-info->name (cdr info)))) (mv (cons type-name cdr-type-lst) (acons name type-name cdr-field-alst)))))
Theorem:
(defthm symbol-listp-of-generate-fty-field-alist.type-lst (b* (((mv ?type-lst ?field-alst) (generate-fty-field-alist fields fty-info))) (symbol-listp type-lst)) :rule-classes :rewrite)
Theorem:
(defthm fty-field-alist-p-of-generate-fty-field-alist.field-alst (b* (((mv ?type-lst ?field-alst) (generate-fty-field-alist fields fty-info))) (fty-field-alist-p field-alst)) :rule-classes :rewrite)
Function:
(defun generate-flexprod-type (name prod flextypes-table fty-info acc ordered-acc) (declare (xargs :guard (and (symbolp name) (fty::flexprod-p prod) (alistp flextypes-table) (fty-info-alist-p fty-info) (fty-types-p acc) (fty-types-p ordered-acc)))) (let ((acl2::__function__ 'generate-flexprod-type)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-types-fix acc)) (ordered-acc (fty-types-fix ordered-acc)) (name (symbol-fix name)) ((if (equal (generate-type-measure fty-info acc) 0)) (prog2$ (er hard? 'fty=>generate-flexprod-type "accumulator exceeding length of all fty functions.~%") (mv acc ordered-acc))) ((if (assoc-equal name acc)) (mv acc ordered-acc)) ((unless (fty::flexprod-p prod)) (mv acc ordered-acc)) (fields (fty::flexprod->fields prod)) ((mv type-lst field-alst) (generate-fty-field-alist fields fty-info)) (new-prod (make-fty-type-prod :fields field-alst)) (new-acc-1 (acons name new-prod acc)) ((mv new-acc-2 updated-ordered-acc) (generate-fty-type-list type-lst flextypes-table fty-info new-acc-1 ordered-acc))) (mv new-acc-2 (acons name new-prod updated-ordered-acc)))))
Function:
(defun generate-flexoption-type (name option flextypes-table fty-info acc ordered-acc) (declare (xargs :guard (and (symbolp name) (fty::flexprod-p option) (alistp flextypes-table) (fty-info-alist-p fty-info) (fty-types-p acc) (fty-types-p ordered-acc)))) (let ((acl2::__function__ 'generate-flexoption-type)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-types-fix acc)) (ordered-acc (fty-types-fix ordered-acc)) (name (symbol-fix name)) ((if (equal (generate-type-measure fty-info acc) 0)) (prog2$ (er hard? 'fty=>generate-flexprod-type "accumulator exceeding length of all fty functions.~%") (mv acc ordered-acc))) ((if (assoc-equal name acc)) (mv acc ordered-acc)) ((unless (fty::flexprod-p option)) (mv acc ordered-acc)) (fields (fty::flexprod->fields option)) ((unless (and (consp fields) (null (cdr fields)))) (prog2$ (er hard? 'fty=>generate-flexoption-type "A flexoption type ~ with more than one field?: ~q0" fields) (mv acc ordered-acc))) (first (car fields)) ((unless (fty::flexprod-field-p first)) (prog2$ (er hard? 'fty=>generate-flexoption-type "Found a none field type in a flexprod :field field: ~q0" first) (mv acc ordered-acc))) (some-type (fty::flexprod-field->type first)) ((unless (symbolp some-type)) (prog2$ (er hard? 'fty=>generate-flexoption-type "Must be a symbol ~q0" some-type) (mv acc ordered-acc))) (basic? (assoc-equal some-type (smt-types))) ((if basic?) (mv (acons name (make-fty-type-option :some-type some-type) acc) (acons name (make-fty-type-option :some-type some-type) ordered-acc))) (some-info (assoc-equal some-type fty-info)) ((unless some-info) (prog2$ (er hard? 'fty=>generate-flexoption-type "some-type ~p0 doesn't ~ exist~%" some-type) (mv acc ordered-acc))) (some-name (fty-info->name (cdr some-info))) (new-option (make-fty-type-option :some-type some-name)) (new-acc-1 (acons name new-option acc)) ((mv new-acc-2 new-ordered-acc) (generate-fty-type some-name flextypes-table fty-info new-acc-1 ordered-acc))) (mv new-acc-2 (acons name new-option new-ordered-acc)))))
Function:
(defun generate-flexsum-type (flexsum flextypes-table fty-info acc ordered-acc) (declare (xargs :guard (and (fty::flexsum-p flexsum) (alistp flextypes-table) (fty-info-alist-p fty-info) (fty-types-p acc) (fty-types-p ordered-acc)))) (let ((acl2::__function__ 'generate-flexsum-type)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-types-fix acc)) (ordered-acc (fty-types-fix ordered-acc)) ((unless (fty::flexsum-p flexsum)) (mv acc ordered-acc)) (prods (fty::flexsum->prods flexsum)) ((unless (consp prods)) (prog2$ (cw "Warning: empty defprod ~q0" prods) (mv acc ordered-acc))) (name (fty::flexsum->name flexsum)) ((unless (symbolp name)) (prog2$ (er hard? 'fty=>generate-flexsum-type "Should be a symbolp: ~q0" name) (mv acc ordered-acc))) ((unless (or (equal (len prods) 1) (equal (len prods) 2))) (prog2$ (cw "Warning: tagsum not supported ~q0" prods) (mv acc ordered-acc)))) (cond ((and (equal (len prods) 1) (fty::flexprod-p (car prods))) (generate-flexprod-type name (car prods) flextypes-table fty-info acc ordered-acc)) ((and (equal (len prods) 2) (fty::flexprod-p (car prods)) (fty::flexprod-p (cadr prods)) (and (equal (fty::flexprod->kind (car prods)) :none) (equal (fty::flexprod->kind (cadr prods)) :some))) (generate-flexoption-type name (cadr prods) flextypes-table fty-info acc ordered-acc)) ((and (equal (len prods) 2) (fty::flexprod-p (car prods)) (fty::flexprod-p (cadr prods)) (and (equal (fty::flexprod->kind (cadr prods)) :none) (equal (fty::flexprod->kind (car prods)) :some))) (generate-flexoption-type name (car prods) flextypes-table fty-info acc ordered-acc)) (t (mv acc ordered-acc))))))
Function:
(defun generate-flexalist-type (flexalst flextypes-table fty-info acc ordered-acc) (declare (xargs :guard (and (fty::flexalist-p flexalst) (alistp flextypes-table) (fty-info-alist-p fty-info) (fty-types-p acc) (fty-types-p ordered-acc)))) (let ((acl2::__function__ 'generate-flexalist-type)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-types-fix acc)) (ordered-acc (fty-types-fix ordered-acc)) ((if (equal (generate-type-measure fty-info acc) 0)) (prog2$ (er hard? 'fty=>generate-flexprod-type "accumulator exceeding length of all fty functions.~%") (mv acc ordered-acc))) ((unless (fty::flexalist-p flexalst)) (mv acc ordered-acc)) (name (fty::flexalist->name flexalst)) ((unless (symbolp name)) (prog2$ (er hard? 'fty=>generate-flexalist-type "Should be a symbolp: ~q0" name) (mv acc ordered-acc))) ((if (assoc-equal name acc)) (mv acc ordered-acc)) (key-type (fty::flexalist->key-type flexalst)) ((unless (symbolp key-type)) (prog2$ (er hard? 'fty=>generate-flexalist-type "Should be a symbolp: ~q0" key-type) (mv acc ordered-acc))) (val-type (fty::flexalist->val-type flexalst)) ((unless (symbolp val-type)) (prog2$ (er hard? 'fty=>generate-flexalist-type "Should be a symbolp: ~q0" val-type) (mv acc ordered-acc))) (basic-key? (assoc-equal key-type (smt-types))) (basic-val? (assoc-equal val-type (smt-types))) (key-info (assoc-equal key-type fty-info)) (val-info (assoc-equal val-type fty-info))) (cond ((and basic-key? basic-val?) (mv (acons name (make-fty-type-alist :key-type key-type :val-type val-type) acc) (acons name (make-fty-type-alist :key-type key-type :val-type val-type) ordered-acc))) ((and basic-key? val-info) (b* ((val-name (fty-info->name (cdr val-info))) (new-alist (make-fty-type-alist :key-type key-type :val-type val-name)) (new-acc-1 (acons name new-alist acc)) ((mv new-acc-2 new-ordered-acc) (generate-fty-type val-name flextypes-table fty-info new-acc-1 ordered-acc))) (mv new-acc-2 (acons name new-alist new-ordered-acc)))) ((and basic-val? key-info) (b* ((key-name (fty-info->name (cdr key-info))) (new-alist (make-fty-type-alist :key-type key-name :val-type val-type)) (new-acc-1 (acons name new-alist acc)) ((mv new-acc-2 new-ordered-acc) (generate-fty-type key-name flextypes-table fty-info new-acc-1 ordered-acc))) (mv new-acc-2 (acons name new-alist new-ordered-acc)))) ((and key-info val-info) (b* ((val-name (fty-info->name (cdr val-info))) (key-name (fty-info->name (cdr key-info))) (new-alist (make-fty-type-alist :key-type key-name :val-type val-name)) (new-acc (acons name new-alist acc)) ((mv new-acc-1 new-ordered-acc-1) (generate-fty-type key-name flextypes-table fty-info new-acc ordered-acc)) (new-acc-1 (mbe :logic (if (o<= (generate-type-measure fty-info new-acc-1) (generate-type-measure fty-info new-acc)) new-acc-1 nil) :exec new-acc-1)) ((if (null new-acc-1)) (mv new-acc new-ordered-acc-1)) ((mv new-acc-2 new-ordered-acc-2) (generate-fty-type val-name flextypes-table fty-info new-acc-1 new-ordered-acc-1))) (mv new-acc-2 (acons name new-alist new-ordered-acc-2)))) (t (prog2$ (er hard? 'fty=>generate-flexalist-type "key-type ~p0 ~ and val-type ~p1 doesn't exist~%" key-type val-type) (mv acc ordered-acc)))))))
Function:
(defun generate-flexlist-type (flexlst flextypes-table fty-info acc ordered-acc) (declare (xargs :guard (and (fty::flexlist-p flexlst) (alistp flextypes-table) (fty-info-alist-p fty-info) (fty-types-p acc) (fty-types-p ordered-acc)))) (let ((acl2::__function__ 'generate-flexlist-type)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-types-fix acc)) (ordered-acc (fty-types-fix ordered-acc)) ((if (equal (generate-type-measure fty-info acc) 0)) (prog2$ (er hard? 'fty=>generate-flexprod-type "accumulator exceeding ~ length of all fty functions.~%") (mv acc ordered-acc))) ((unless (fty::flexlist-p flexlst)) (mv acc ordered-acc)) (name (fty::flexlist->name flexlst)) ((unless (symbolp name)) (prog2$ (er hard? 'fty=>generate-flexlist-type "Name should be a symbol ~ ~q0" name) (mv acc ordered-acc))) ((if (assoc-equal name acc)) (mv acc ordered-acc)) (true-listp? (fty::flexlist->true-listp flexlst)) ((unless true-listp?) (prog2$ (er hard? 'fty=>generate-flexlist-type "Smtlink can't handle ~ lists that are not true-listp yet due to ~ soundness concerns: ~q0" name) (mv acc ordered-acc))) (elt-type (fty::flexlist->elt-type flexlst)) ((unless (symbolp elt-type)) (prog2$ (er hard? 'fty=>generate-flexlist-type "Should be a symbolp: ~q0" elt-type) (mv acc ordered-acc))) (basic? (assoc-equal elt-type (smt-types))) ((if basic?) (mv (acons name (make-fty-type-list :elt-type elt-type) acc) (acons name (make-fty-type-list :elt-type elt-type) ordered-acc))) (info (assoc-equal elt-type fty-info)) ((unless info) (prog2$ (er hard? 'fty=>generate-flexlist-type "elt-type ~p0 doesn't ~ exist in fty-info~%" elt-type) (mv acc ordered-acc))) (elt-name (fty-info->name (cdr info))) (new-list (make-fty-type-list :elt-type elt-name)) (new-acc-1 (acons name new-list acc)) ((mv new-acc-2 new-ordered-acc) (generate-fty-type elt-name flextypes-table fty-info new-acc-1 ordered-acc))) (mv new-acc-2 (acons name new-list new-ordered-acc)))))
Function:
(defun generate-fty-type (name flextypes-table fty-info acc ordered-acc) (declare (xargs :guard (and (symbolp name) (alistp flextypes-table) (fty-info-alist-p fty-info) (fty-types-p acc) (fty-types-p ordered-acc)))) (let ((acl2::__function__ 'generate-fty-type)) (declare (ignorable acl2::__function__)) (b* ((acc (fty-types-fix acc)) (ordered-acc (fty-types-fix ordered-acc)) ((unless (alistp flextypes-table)) (prog2$ (er hard? 'fty=>generate-fty-type "flextypes-table is not an ~ alist?~%") (mv acc ordered-acc))) (exist? (assoc-equal name flextypes-table)) ((unless exist?) (prog2$ (er hard? 'fty=>generate-fty-type "Found a type that's ~ not basic and not fty: ~q0" name) (mv acc ordered-acc))) (agg (cdr exist?)) ((unless (fty::flextypes-p agg)) (prog2$ (er hard? 'fty=>generate-fty-type "Should be a flextypes, but ~ found ~q0" agg) (mv acc ordered-acc))) (types (fty::flextypes->types agg)) ((if (or (not (true-listp types)) (atom types) (not (null (cdr types))))) (prog2$ (er hard? 'fty=>generate-fty-type "Possible recursive types ~ found, not supported in Smtlink yet.~%") (mv acc ordered-acc))) (type (car types))) (cond ((fty::flexsum-p type) (generate-flexsum-type type flextypes-table fty-info acc ordered-acc)) ((fty::flexlist-p type) (generate-flexlist-type type flextypes-table fty-info acc ordered-acc)) ((fty::flexalist-p type) (generate-flexalist-type type flextypes-table fty-info acc ordered-acc)) (t (mv acc ordered-acc))))))
Function:
(defun generate-fty-type-list (name-lst flextypes-table fty-info acc ordered-acc) (declare (xargs :guard (and (symbol-listp name-lst) (alistp flextypes-table) (fty-info-alist-p fty-info) (fty-types-p acc) (fty-types-p ordered-acc)))) (let ((acl2::__function__ 'generate-fty-type-list)) (declare (ignorable acl2::__function__)) (b* ((name-lst (symbol-list-fix name-lst)) (acc (fty-types-fix acc)) (ordered-acc (fty-types-fix ordered-acc)) ((unless (consp name-lst)) (mv acc ordered-acc)) ((cons first rest) name-lst) (basic? (assoc-equal first (smt-types))) ((if basic?) (generate-fty-type-list rest flextypes-table fty-info acc ordered-acc)) ((mv new-acc new-ordered-acc) (generate-fty-type first flextypes-table fty-info acc ordered-acc)) (new-acc (mbe :logic (if (o<= (generate-type-measure fty-info new-acc) (generate-type-measure fty-info acc)) new-acc nil) :exec new-acc)) ((if (null new-acc)) (mv acc new-ordered-acc))) (generate-fty-type-list rest flextypes-table fty-info new-acc new-ordered-acc))))
Function:
(defun generate-fty-types-mutual-flag (flag prod option flexsum flexalst flexlst name name-lst flextypes-table fty-info acc ordered-acc) (declare (xargs :non-executable t)) (declare (ignorable prod option flexsum flexalst flexlst name name-lst flextypes-table fty-info acc ordered-acc)) (prog2$ (acl2::throw-nonexec-error 'generate-fty-types-mutual-flag (list flag prod option flexsum flexalst flexlst name name-lst flextypes-table fty-info acc ordered-acc)) (cond ((equal flag 'generate-flexprod-type) ((lambda (acl2::__function__ ordered-acc fty-info prod flextypes-table name acc) ((lambda (acc name flextypes-table prod fty-info ordered-acc) ((lambda (ordered-acc fty-info acc prod flextypes-table name) ((lambda (name flextypes-table prod ordered-acc acc fty-info) (if (equal (generate-type-measure fty-info acc) '0) (cons acc (cons ordered-acc 'nil)) (if (assoc-equal name acc) (cons acc (cons ordered-acc 'nil)) (if (fty::flexprod-p prod) ((lambda (fields flextypes-table ordered-acc acc name fty-info) ((lambda (mv name acc ordered-acc fty-info flextypes-table) ((lambda (type-lst field-alst name acc ordered-acc fty-info flextypes-table) ((lambda (new-prod type-lst flextypes-table fty-info ordered-acc acc name) ((lambda (new-acc-1 name new-prod ordered-acc fty-info flextypes-table type-lst) ((lambda (mv new-prod name) ((lambda (new-acc-2 updated-ordered-acc new-prod name) (cons new-acc-2 (cons (acons name new-prod updated-ordered-acc) 'nil))) (mv-nth '0 mv) (mv-nth '1 mv) new-prod name)) (generate-fty-types-mutual-flag 'generate-fty-type-list nil nil nil nil nil nil type-lst flextypes-table fty-info new-acc-1 ordered-acc) new-prod name)) (acons name new-prod acc) name new-prod ordered-acc fty-info flextypes-table type-lst)) (fty-type-prod field-alst) type-lst flextypes-table fty-info ordered-acc acc name)) (mv-nth '0 mv) (mv-nth '1 mv) name acc ordered-acc fty-info flextypes-table)) (generate-fty-field-alist fields fty-info) name acc ordered-acc fty-info flextypes-table)) (fty::flexprod->fields$inline prod) flextypes-table ordered-acc acc name fty-info) (cons acc (cons ordered-acc 'nil)))))) (symbol-fix name) flextypes-table prod ordered-acc acc fty-info)) (fty-types-fix$inline ordered-acc) fty-info acc prod flextypes-table name)) (fty-types-fix$inline acc) name flextypes-table prod fty-info ordered-acc)) 'generate-flexprod-type ordered-acc fty-info prod flextypes-table name acc)) ((equal flag 'generate-flexoption-type) ((lambda (acl2::__function__ ordered-acc fty-info option flextypes-table name acc) ((lambda (acc name flextypes-table option fty-info ordered-acc) ((lambda (ordered-acc fty-info acc option flextypes-table name) ((lambda (name flextypes-table option ordered-acc acc fty-info) (if (equal (generate-type-measure fty-info acc) '0) (cons acc (cons ordered-acc 'nil)) (if (assoc-equal name acc) (cons acc (cons ordered-acc 'nil)) (if (fty::flexprod-p option) ((lambda (fields name acc ordered-acc fty-info flextypes-table) (if (consp fields) (if (equal (cdr fields) 'nil) ((lambda (first flextypes-table fty-info ordered-acc acc name) (if (fty::flexprod-field-p first) ((lambda (some-type name acc ordered-acc fty-info flextypes-table) (if (symbolp some-type) ((lambda (basic? flextypes-table fty-info ordered-acc acc some-type name) (if basic? (cons (acons name (fty-type-option some-type) acc) (cons (acons name (fty-type-option some-type) ordered-acc) 'nil)) ((lambda (some-info some-type flextypes-table fty-info ordered-acc acc name) (if some-info ((lambda (some-name name acc ordered-acc fty-info flextypes-table) ((lambda (new-option some-name flextypes-table fty-info ordered-acc acc name) ((lambda (new-acc-1 name new-option ordered-acc fty-info flextypes-table some-name) ((lambda (mv new-option name) ((lambda (new-acc-2 new-ordered-acc new-option name) (cons new-acc-2 (cons (acons name new-option new-ordered-acc) 'nil))) (mv-nth '0 mv) (mv-nth '1 mv) new-option name)) (generate-fty-types-mutual-flag 'generate-fty-type nil nil nil nil nil some-name nil flextypes-table fty-info new-acc-1 ordered-acc) new-option name)) (acons name new-option acc) name new-option ordered-acc fty-info flextypes-table some-name)) (fty-type-option some-name) some-name flextypes-table fty-info ordered-acc acc name)) (fty-info->name$inline (cdr some-info)) name acc ordered-acc fty-info flextypes-table) (cons acc (cons ordered-acc 'nil)))) (assoc-equal some-type fty-info) some-type flextypes-table fty-info ordered-acc acc name))) (assoc-equal some-type (smt-types)) flextypes-table fty-info ordered-acc acc some-type name) (cons acc (cons ordered-acc 'nil)))) (fty::flexprod-field->type$inline first) name acc ordered-acc fty-info flextypes-table) (cons acc (cons ordered-acc 'nil)))) (car fields) flextypes-table fty-info ordered-acc acc name) (cons acc (cons ordered-acc 'nil))) (cons acc (cons ordered-acc 'nil)))) (fty::flexprod->fields$inline option) name acc ordered-acc fty-info flextypes-table) (cons acc (cons ordered-acc 'nil)))))) (symbol-fix name) flextypes-table option ordered-acc acc fty-info)) (fty-types-fix$inline ordered-acc) fty-info acc option flextypes-table name)) (fty-types-fix$inline acc) name flextypes-table option fty-info ordered-acc)) 'generate-flexoption-type ordered-acc fty-info option flextypes-table name acc)) ((equal flag 'generate-flexsum-type) ((lambda (acl2::__function__ ordered-acc fty-info flextypes-table flexsum acc) ((lambda (acc flexsum flextypes-table fty-info ordered-acc) ((lambda (ordered-acc acc fty-info flextypes-table flexsum) (if (fty::flexsum-p flexsum) ((lambda (prods flextypes-table fty-info acc ordered-acc flexsum) (if (consp prods) ((lambda (name ordered-acc acc fty-info flextypes-table prods) (if (symbolp name) (if (equal (len prods) '1) (if (fty::flexprod-p (car prods)) (generate-fty-types-mutual-flag 'generate-flexprod-type (car prods) nil nil nil nil name nil flextypes-table fty-info acc ordered-acc) (cons acc (cons ordered-acc 'nil))) (if (equal (len prods) '2) (if (fty::flexprod-p (car prods)) (if (fty::flexprod-p (car (cdr prods))) (if (equal (fty::flexprod->kind$inline (car prods)) ':none) (if (equal (fty::flexprod->kind$inline (car (cdr prods))) ':some) (generate-fty-types-mutual-flag 'generate-flexoption-type nil (car (cdr prods)) nil nil nil name nil flextypes-table fty-info acc ordered-acc) (cons acc (cons ordered-acc 'nil))) (if (equal (fty::flexprod->kind$inline (car (cdr prods))) ':none) (if (equal (fty::flexprod->kind$inline (car prods)) ':some) (generate-fty-types-mutual-flag 'generate-flexoption-type nil (car prods) nil nil nil name nil flextypes-table fty-info acc ordered-acc) (cons acc (cons ordered-acc 'nil))) (cons acc (cons ordered-acc 'nil)))) (cons acc (cons ordered-acc 'nil))) (cons acc (cons ordered-acc 'nil))) (cons acc (cons ordered-acc 'nil)))) (cons acc (cons ordered-acc 'nil)))) (fty::flexsum->name$inline flexsum) ordered-acc acc fty-info flextypes-table prods) (cons acc (cons ordered-acc 'nil)))) (fty::flexsum->prods$inline flexsum) flextypes-table fty-info acc ordered-acc flexsum) (cons acc (cons ordered-acc 'nil)))) (fty-types-fix$inline ordered-acc) acc fty-info flextypes-table flexsum)) (fty-types-fix$inline acc) flexsum flextypes-table fty-info ordered-acc)) 'generate-flexsum-type ordered-acc fty-info flextypes-table flexsum acc)) ((equal flag 'generate-flexalist-type) ((lambda (acl2::__function__ ordered-acc flextypes-table flexalst fty-info acc) ((lambda (acc fty-info flexalst flextypes-table ordered-acc) ((lambda (ordered-acc flextypes-table flexalst acc fty-info) (if (equal (generate-type-measure fty-info acc) '0) (cons acc (cons ordered-acc 'nil)) (if (fty::flexalist-p flexalst) ((lambda (name flextypes-table fty-info flexalst ordered-acc acc) (if (symbolp name) (if (assoc-equal name acc) (cons acc (cons ordered-acc 'nil)) ((lambda (key-type fty-info name acc ordered-acc flextypes-table flexalst) (if (symbolp key-type) ((lambda (val-type flextypes-table ordered-acc acc name fty-info key-type) (if (symbolp val-type) ((lambda (basic-key? key-type fty-info name acc ordered-acc flextypes-table val-type) ((lambda (basic-val? val-type flextypes-table ordered-acc acc name basic-key? fty-info key-type) ((lambda (key-info basic-key? basic-val? name key-type acc ordered-acc flextypes-table fty-info val-type) ((lambda (val-info key-info flextypes-table fty-info ordered-acc acc val-type key-type name basic-val? basic-key?) (if basic-key? (if basic-val? (cons (acons name (fty-type-alist key-type val-type) acc) (cons (acons name (fty-type-alist key-type val-type) ordered-acc) 'nil)) (if val-info ((lambda (val-name name acc ordered-acc fty-info flextypes-table key-type) ((lambda (new-alist val-name flextypes-table fty-info ordered-acc acc name) ((lambda (new-acc-1 name new-alist ordered-acc fty-info flextypes-table val-name) ((lambda (mv new-alist name) ((lambda (new-acc-2 new-ordered-acc new-alist name) (cons new-acc-2 (cons (acons name new-alist new-ordered-acc) 'nil))) (mv-nth '0 mv) (mv-nth '1 mv) new-alist name)) (generate-fty-types-mutual-flag 'generate-fty-type nil nil nil nil nil val-name nil flextypes-table fty-info new-acc-1 ordered-acc) new-alist name)) (acons name new-alist acc) name new-alist ordered-acc fty-info flextypes-table val-name)) (fty-type-alist key-type val-name) val-name flextypes-table fty-info ordered-acc acc name)) (fty-info->name$inline (cdr val-info)) name acc ordered-acc fty-info flextypes-table key-type) (cons acc (cons ordered-acc 'nil)))) (if basic-val? (if key-info ((lambda (key-name name acc ordered-acc fty-info flextypes-table val-type) ((lambda (new-alist key-name flextypes-table fty-info ordered-acc acc name) ((lambda (new-acc-1 name new-alist ordered-acc fty-info flextypes-table key-name) ((lambda (mv new-alist name) ((lambda (new-acc-2 new-ordered-acc new-alist name) (cons new-acc-2 (cons (acons name new-alist new-ordered-acc) 'nil))) (mv-nth '0 mv) (mv-nth '1 mv) new-alist name)) (generate-fty-types-mutual-flag 'generate-fty-type nil nil nil nil nil key-name nil flextypes-table fty-info new-acc-1 ordered-acc) new-alist name)) (acons name new-alist acc) name new-alist ordered-acc fty-info flextypes-table key-name)) (fty-type-alist key-name val-type) key-name flextypes-table fty-info ordered-acc acc name)) (fty-info->name$inline (cdr key-info)) name acc ordered-acc fty-info flextypes-table val-type) (cons acc (cons ordered-acc 'nil))) (if key-info (if val-info ((lambda (val-name flextypes-table fty-info ordered-acc acc name key-info) ((lambda (key-name name acc ordered-acc fty-info flextypes-table val-name) ((lambda (new-alist key-name flextypes-table fty-info ordered-acc val-name acc name) ((lambda (new-acc name new-alist val-name ordered-acc fty-info flextypes-table key-name) ((lambda (mv val-name flextypes-table new-alist name new-acc fty-info) ((lambda (new-acc-1 new-ordered-acc-1 val-name flextypes-table new-alist name new-acc fty-info) ((lambda (new-acc-1 name new-alist fty-info flextypes-table val-name new-ordered-acc-1 new-acc) (if (equal new-acc-1 'nil) (cons new-acc (cons new-ordered-acc-1 'nil)) ((lambda (mv new-alist name) ((lambda (new-acc-2 new-ordered-acc-2 new-alist name) (cons new-acc-2 (cons (acons name new-alist new-ordered-acc-2) 'nil))) (mv-nth '0 mv) (mv-nth '1 mv) new-alist name)) (generate-fty-types-mutual-flag 'generate-fty-type nil nil nil nil nil val-name nil flextypes-table fty-info new-acc-1 new-ordered-acc-1) new-alist name))) (if (o< (generate-type-measure fty-info new-acc) (generate-type-measure fty-info new-acc-1)) 'nil new-acc-1) name new-alist fty-info flextypes-table val-name new-ordered-acc-1 new-acc)) (mv-nth '0 mv) (mv-nth '1 mv) val-name flextypes-table new-alist name new-acc fty-info)) (generate-fty-types-mutual-flag 'generate-fty-type nil nil nil nil nil key-name nil flextypes-table fty-info new-acc ordered-acc) val-name flextypes-table new-alist name new-acc fty-info)) (acons name new-alist acc) name new-alist val-name ordered-acc fty-info flextypes-table key-name)) (fty-type-alist key-name val-name) key-name flextypes-table fty-info ordered-acc val-name acc name)) (fty-info->name$inline (cdr key-info)) name acc ordered-acc fty-info flextypes-table val-name)) (fty-info->name$inline (cdr val-info)) flextypes-table fty-info ordered-acc acc name key-info) (cons acc (cons ordered-acc 'nil))) (cons acc (cons ordered-acc 'nil)))))) (assoc-equal val-type fty-info) key-info flextypes-table fty-info ordered-acc acc val-type key-type name basic-val? basic-key?)) (assoc-equal key-type fty-info) basic-key? basic-val? name key-type acc ordered-acc flextypes-table fty-info val-type)) (assoc-equal val-type (smt-types)) val-type flextypes-table ordered-acc acc name basic-key? fty-info key-type)) (assoc-equal key-type (smt-types)) key-type fty-info name acc ordered-acc flextypes-table val-type) (cons acc (cons ordered-acc 'nil)))) (fty::flexalist->val-type$inline flexalst) flextypes-table ordered-acc acc name fty-info key-type) (cons acc (cons ordered-acc 'nil)))) (fty::flexalist->key-type$inline flexalst) fty-info name acc ordered-acc flextypes-table flexalst)) (cons acc (cons ordered-acc 'nil)))) (fty::flexalist->name$inline flexalst) flextypes-table fty-info flexalst ordered-acc acc) (cons acc (cons ordered-acc 'nil))))) (fty-types-fix$inline ordered-acc) flextypes-table flexalst acc fty-info)) (fty-types-fix$inline acc) fty-info flexalst flextypes-table ordered-acc)) 'generate-flexalist-type ordered-acc flextypes-table flexalst fty-info acc)) ((equal flag 'generate-flexlist-type) ((lambda (acl2::__function__ ordered-acc flextypes-table flexlst fty-info acc) ((lambda (acc fty-info flexlst flextypes-table ordered-acc) ((lambda (ordered-acc flextypes-table flexlst acc fty-info) (if (equal (generate-type-measure fty-info acc) '0) (cons acc (cons ordered-acc 'nil)) (if (fty::flexlist-p flexlst) ((lambda (name fty-info flextypes-table flexlst ordered-acc acc) (if (symbolp name) (if (assoc-equal name acc) (cons acc (cons ordered-acc 'nil)) ((lambda (true-listp? flextypes-table fty-info ordered-acc acc name flexlst) (if true-listp? ((lambda (elt-type name acc ordered-acc fty-info flextypes-table) (if (symbolp elt-type) ((lambda (basic? flextypes-table fty-info ordered-acc acc elt-type name) (if basic? (cons (acons name (fty-type-list elt-type) acc) (cons (acons name (fty-type-list elt-type) ordered-acc) 'nil)) ((lambda (info elt-type flextypes-table fty-info ordered-acc acc name) (if info ((lambda (elt-name name acc ordered-acc fty-info flextypes-table) ((lambda (new-list elt-name flextypes-table fty-info ordered-acc acc name) ((lambda (new-acc-1 name new-list ordered-acc fty-info flextypes-table elt-name) ((lambda (mv new-list name) ((lambda (new-acc-2 new-ordered-acc new-list name) (cons new-acc-2 (cons (acons name new-list new-ordered-acc) 'nil))) (mv-nth '0 mv) (mv-nth '1 mv) new-list name)) (generate-fty-types-mutual-flag 'generate-fty-type nil nil nil nil nil elt-name nil flextypes-table fty-info new-acc-1 ordered-acc) new-list name)) (acons name new-list acc) name new-list ordered-acc fty-info flextypes-table elt-name)) (fty-type-list elt-name) elt-name flextypes-table fty-info ordered-acc acc name)) (fty-info->name$inline (cdr info)) name acc ordered-acc fty-info flextypes-table) (cons acc (cons ordered-acc 'nil)))) (assoc-equal elt-type fty-info) elt-type flextypes-table fty-info ordered-acc acc name))) (assoc-equal elt-type (smt-types)) flextypes-table fty-info ordered-acc acc elt-type name) (cons acc (cons ordered-acc 'nil)))) (fty::flexlist->elt-type$inline flexlst) name acc ordered-acc fty-info flextypes-table) (cons acc (cons ordered-acc 'nil)))) (fty::flexlist->true-listp$inline flexlst) flextypes-table fty-info ordered-acc acc name flexlst)) (cons acc (cons ordered-acc 'nil)))) (fty::flexlist->name$inline flexlst) fty-info flextypes-table flexlst ordered-acc acc) (cons acc (cons ordered-acc 'nil))))) (fty-types-fix$inline ordered-acc) flextypes-table flexlst acc fty-info)) (fty-types-fix$inline acc) fty-info flexlst flextypes-table ordered-acc)) 'generate-flexlist-type ordered-acc flextypes-table flexlst fty-info acc)) ((equal flag 'generate-fty-type) ((lambda (acl2::__function__ ordered-acc fty-info name flextypes-table acc) ((lambda (acc flextypes-table name fty-info ordered-acc) ((lambda (ordered-acc acc fty-info name flextypes-table) (if (alistp flextypes-table) ((lambda (exist? name flextypes-table fty-info ordered-acc acc) (if exist? ((lambda (agg acc ordered-acc fty-info flextypes-table) (if (fty::flextypes-p agg) ((lambda (types flextypes-table fty-info ordered-acc acc) (if (true-listp types) (if (consp types) (if (equal (cdr types) 'nil) ((lambda (type ordered-acc acc fty-info flextypes-table) (if (fty::flexsum-p type) (generate-fty-types-mutual-flag 'generate-flexsum-type nil nil type nil nil nil nil flextypes-table fty-info acc ordered-acc) (if (fty::flexlist-p type) (generate-fty-types-mutual-flag 'generate-flexlist-type nil nil nil nil type nil nil flextypes-table fty-info acc ordered-acc) (if (fty::flexalist-p type) (generate-fty-types-mutual-flag 'generate-flexalist-type nil nil nil type nil nil nil flextypes-table fty-info acc ordered-acc) (cons acc (cons ordered-acc 'nil)))))) (car types) ordered-acc acc fty-info flextypes-table) (cons acc (cons ordered-acc 'nil))) (cons acc (cons ordered-acc 'nil))) (cons acc (cons ordered-acc 'nil)))) (fty::flextypes->types$inline agg) flextypes-table fty-info ordered-acc acc) (cons acc (cons ordered-acc 'nil)))) (cdr exist?) acc ordered-acc fty-info flextypes-table) (cons acc (cons ordered-acc 'nil)))) (assoc-equal name flextypes-table) name flextypes-table fty-info ordered-acc acc) (cons acc (cons ordered-acc 'nil)))) (fty-types-fix$inline ordered-acc) acc fty-info name flextypes-table)) (fty-types-fix$inline acc) flextypes-table name fty-info ordered-acc)) 'generate-fty-type ordered-acc fty-info name flextypes-table acc)) (t ((lambda (acl2::__function__ acc fty-info flextypes-table ordered-acc name-lst) ((lambda (name-lst ordered-acc flextypes-table fty-info acc) ((lambda (acc name-lst fty-info flextypes-table ordered-acc) ((lambda (ordered-acc flextypes-table fty-info acc name-lst) (if (consp name-lst) ((lambda (first ordered-acc acc fty-info flextypes-table name-lst) ((lambda (rest flextypes-table fty-info acc ordered-acc first) ((lambda (basic? first ordered-acc acc fty-info flextypes-table rest) (if basic? (generate-fty-types-mutual-flag 'generate-fty-type-list nil nil nil nil nil nil rest flextypes-table fty-info acc ordered-acc) ((lambda (mv rest flextypes-table acc fty-info) ((lambda (new-acc new-ordered-acc rest flextypes-table acc fty-info) ((lambda (new-acc fty-info flextypes-table rest new-ordered-acc acc) (if (equal new-acc 'nil) (cons acc (cons new-ordered-acc 'nil)) (generate-fty-types-mutual-flag 'generate-fty-type-list nil nil nil nil nil nil rest flextypes-table fty-info new-acc new-ordered-acc))) (if (o< (generate-type-measure fty-info acc) (generate-type-measure fty-info new-acc)) 'nil new-acc) fty-info flextypes-table rest new-ordered-acc acc)) (mv-nth '0 mv) (mv-nth '1 mv) rest flextypes-table acc fty-info)) (generate-fty-types-mutual-flag 'generate-fty-type nil nil nil nil nil first nil flextypes-table fty-info acc ordered-acc) rest flextypes-table acc fty-info))) (assoc-equal first (smt-types)) first ordered-acc acc fty-info flextypes-table rest)) (cdr name-lst) flextypes-table fty-info acc ordered-acc first)) (car name-lst) ordered-acc acc fty-info flextypes-table name-lst) (cons acc (cons ordered-acc 'nil)))) (fty-types-fix$inline ordered-acc) flextypes-table fty-info acc name-lst)) (fty-types-fix$inline acc) name-lst fty-info flextypes-table ordered-acc)) (acl2::symbol-list-fix$inline name-lst) ordered-acc flextypes-table fty-info acc)) 'generate-fty-type-list acc fty-info flextypes-table ordered-acc name-lst)))))
Theorem:
(defthm generate-fty-types-mutual-flag-equivalences (and (equal (generate-fty-types-mutual-flag 'generate-flexprod-type prod option flexsum flexalst flexlst name name-lst flextypes-table fty-info acc ordered-acc) (generate-flexprod-type name prod flextypes-table fty-info acc ordered-acc)) (equal (generate-fty-types-mutual-flag 'generate-flexoption-type prod option flexsum flexalst flexlst name name-lst flextypes-table fty-info acc ordered-acc) (generate-flexoption-type name option flextypes-table fty-info acc ordered-acc)) (equal (generate-fty-types-mutual-flag 'generate-flexsum-type prod option flexsum flexalst flexlst name name-lst flextypes-table fty-info acc ordered-acc) (generate-flexsum-type flexsum flextypes-table fty-info acc ordered-acc)) (equal (generate-fty-types-mutual-flag 'generate-flexalist-type prod option flexsum flexalst flexlst name name-lst flextypes-table fty-info acc ordered-acc) (generate-flexalist-type flexalst flextypes-table fty-info acc ordered-acc)) (equal (generate-fty-types-mutual-flag 'generate-flexlist-type prod option flexsum flexalst flexlst name name-lst flextypes-table fty-info acc ordered-acc) (generate-flexlist-type flexlst flextypes-table fty-info acc ordered-acc)) (equal (generate-fty-types-mutual-flag 'generate-fty-type prod option flexsum flexalst flexlst name name-lst flextypes-table fty-info acc ordered-acc) (generate-fty-type name flextypes-table fty-info acc ordered-acc)) (equal (generate-fty-types-mutual-flag 'generate-fty-type-list prod option flexsum flexalst flexlst name name-lst flextypes-table fty-info acc ordered-acc) (generate-fty-type-list name-lst flextypes-table fty-info acc ordered-acc))))
Theorem:
(defthm return-type-of-generate-flexprod-type.updated-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-flexprod-type name prod flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-flexprod-type.updated-ordered-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-flexprod-type name prod flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-ordered-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-flexoption-type.updated-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-flexoption-type name option flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-flexoption-type.updated-ordered-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-flexoption-type name option flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-ordered-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-flexsum-type.updated-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-flexsum-type flexsum flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-flexsum-type.updated-ordered-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-flexsum-type flexsum flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-ordered-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-flexalist-type.updated-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-flexalist-type flexalst flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-flexalist-type.updated-ordered-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-flexalist-type flexalst flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-ordered-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-flexlist-type.updated-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-flexlist-type flexlst flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-flexlist-type.updated-ordered-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-flexlist-type flexlst flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-ordered-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-fty-type.updated-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-fty-type name flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-fty-type.updated-ordered-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-fty-type name flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-ordered-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-fty-type-list.updated-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-fty-type-list name-lst flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-acc)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-generate-fty-type-list.updated-ordered-acc (b* (((mv ?updated-acc ?updated-ordered-acc) (generate-fty-type-list name-lst flextypes-table fty-info acc ordered-acc))) (fty-types-p updated-ordered-acc)) :rule-classes :rewrite)