• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
            • Aignet-extension-p
            • Aignet-nodes-ok
              • Aignet-outputs-aux
              • Aignet-nxsts-aux
              • Fanin
              • Aignet-outputs
              • Lookup-reg->nxst
              • Aignet-lit-fix
              • Aignet-fanins
              • Stype-count
              • Aignet-nxsts
              • Aignet-idp
              • Aignet-norm
              • Aignet-norm-p
              • Aignet-id-fix
              • Fanin-count
              • Proper-node-listp
              • Fanin-node-p
              • Node-list
              • Aignet-litp
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Network

    Aignet-nodes-ok

    Basic well-formedness constraints for the AIG network.

    Signature
    (aignet-nodes-ok aignet) → *
    Arguments
    aignet — Guard (node-listp aignet).

    We require that:

    • Each fanin is a well-formed in the sense of aignet-litp, i.e., it exists somewhere ``earlier'' in the network (in the suffix of the list) so that the network is topologically ordered, and it is not a combinational output node.
    • Each next-state (register input) node must refer to a valid register that exists somewhere earlier in the network.

    Definitions and Theorems

    Function: aignet-nodes-ok

    (defun aignet-nodes-ok (aignet)
     (declare (xargs :guard (node-listp aignet)))
     (let ((__function__ 'aignet-nodes-ok))
      (declare (ignorable __function__))
      (if (endp aignet)
          t
       (and (aignet-case (node->type (car aignet))
                         (node->regp (car aignet))
                         :ci t :po
                         (aignet-litp (co-node->fanin (car aignet))
                                      (cdr aignet))
                         :nxst
                         (and (aignet-litp (co-node->fanin (car aignet))
                                           (cdr aignet))
                              (< (nxst-node->reg (car aignet))
                                 (stype-count :reg (cdr aignet))))
                         :gate
                         (let ((f0 (gate-node->fanin0 (car aignet)))
                               (f1 (gate-node->fanin1 (car aignet))))
                           (and (aignet-litp f0 (cdr aignet))
                                (aignet-litp f1 (cdr aignet))))
                         :otherwise nil)
            (aignet-nodes-ok (cdr aignet))))))

    Theorem: aignet-nodes-ok-of-node-list-fix-aignet

    (defthm aignet-nodes-ok-of-node-list-fix-aignet
      (equal (aignet-nodes-ok (node-list-fix aignet))
             (aignet-nodes-ok aignet)))

    Theorem: aignet-nodes-ok-node-list-equiv-congruence-on-aignet

    (defthm aignet-nodes-ok-node-list-equiv-congruence-on-aignet
      (implies (node-list-equiv aignet aignet-equiv)
               (equal (aignet-nodes-ok aignet)
                      (aignet-nodes-ok aignet-equiv)))
      :rule-classes :congruence)

    Theorem: proper-node-list-when-aignet-nodes-ok

    (defthm proper-node-list-when-aignet-nodes-ok
      (implies (and (aignet-nodes-ok aignet)
                    (node-listp aignet))
               (proper-node-listp aignet)))

    Theorem: co-fanin-ordered-when-aignet-nodes-ok

    (defthm co-fanin-ordered-when-aignet-nodes-ok
     (implies (and (aignet-nodes-ok aignet)
                   (equal (node->type (car (lookup-id id aignet)))
                          (out-type)))
              (< (lit-id (co-node->fanin (car (lookup-id id aignet))))
                 (nfix id)))
     :rule-classes
     (:rewrite
         (:linear
              :trigger-terms
              ((lit-id (co-node->fanin (car (lookup-id id aignet))))))))

    Theorem: nxst-reg-ordered-when-aignet-nodes-ok

    (defthm nxst-reg-ordered-when-aignet-nodes-ok
     (implies (and (aignet-nodes-ok aignet)
                   (equal (node->type (car (lookup-id id aignet)))
                          (out-type))
                   (equal (node->regp (car (lookup-id id aignet)))
                          1))
              (< (nxst-node->reg (car (lookup-id id aignet)))
                 (stype-count :reg (lookup-id id aignet))))
     :rule-classes
     (:rewrite
      (:linear
        :trigger-terms ((nxst-node->reg (car (lookup-id id aignet)))))))

    Theorem: gate-fanin0-ordered-when-aignet-nodes-ok

    (defthm gate-fanin0-ordered-when-aignet-nodes-ok
     (implies
          (and (aignet-nodes-ok aignet)
               (equal (node->type (car (lookup-id id aignet)))
                      (gate-type)))
          (< (lit-id (gate-node->fanin0 (car (lookup-id id aignet))))
             (nfix id)))
     :rule-classes
     (:rewrite
      (:linear
           :trigger-terms
           ((lit-id (gate-node->fanin0 (car (lookup-id id aignet))))))))

    Theorem: gate-fanin1-ordered-when-aignet-nodes-ok

    (defthm gate-fanin1-ordered-when-aignet-nodes-ok
     (implies
          (and (aignet-nodes-ok aignet)
               (equal (node->type (car (lookup-id id aignet)))
                      (gate-type)))
          (< (lit-id (gate-node->fanin1 (car (lookup-id id aignet))))
             (nfix id)))
     :rule-classes
     (:rewrite
      (:linear
           :trigger-terms
           ((lit-id (gate-node->fanin1 (car (lookup-id id aignet))))))))

    Theorem: co-fanin-aignet-litp-when-aignet-nodes-ok

    (defthm co-fanin-aignet-litp-when-aignet-nodes-ok
     (implies
          (and (aignet-nodes-ok aignet)
               (equal (node->type (car (lookup-id id aignet)))
                      (out-type))
               (aignet-extension-p aignet2 (cdr (lookup-id id aignet))))
          (aignet-litp (co-node->fanin (car (lookup-id id aignet)))
                       aignet2)))

    Theorem: gate-fanin0-aignet-litp-when-aignet-nodes-ok

    (defthm gate-fanin0-aignet-litp-when-aignet-nodes-ok
     (implies
          (and (aignet-nodes-ok aignet)
               (equal (node->type (car (lookup-id id aignet)))
                      (gate-type))
               (aignet-extension-p aignet2 (cdr (lookup-id id aignet))))
          (aignet-litp (gate-node->fanin0 (car (lookup-id id aignet)))
                       aignet2)))

    Theorem: gate-fanin1-aignet-litp-when-aignet-nodes-ok

    (defthm gate-fanin1-aignet-litp-when-aignet-nodes-ok
     (implies
          (and (aignet-nodes-ok aignet)
               (equal (node->type (car (lookup-id id aignet)))
                      (gate-type))
               (aignet-extension-p aignet2 (cdr (lookup-id id aignet))))
          (aignet-litp (gate-node->fanin1 (car (lookup-id id aignet)))
                       aignet2)))

    Theorem: aignet-nodes-ok-of-extension

    (defthm aignet-nodes-ok-of-extension
      (implies (and (aignet-extension-p y x)
                    (aignet-nodes-ok y))
               (aignet-nodes-ok x)))

    Theorem: aignet-nodes-ok-of-suffix-inverse

    (defthm aignet-nodes-ok-of-suffix-inverse
      (implies (and (aignet-extension-bind-inverse :orig x
                                                   :new y)
                    (aignet-nodes-ok y))
               (aignet-nodes-ok x)))